1) adjacent strong edge coloring
邻强边着色
1.
What s adjacent strong edge coloring is meaning that if a proper kedge coloring σ is satisfied with c(u)≠c(v), where c(u)={σ(uv)|uv∈E(G)}, then σ is called kadjacent strong edge coloring of G.
则其邻强边染色是指对于图G(V,E),若σ:E→{1,2,…,n}为其一正常着色, u,v∈V,当uv∈E(G)时,若c(u)≠c(v),其中c(u)={σ(uv)|uv∈E(G)},则称σ为G的邻强边着色。
2) strong edge-coloring
强边着色
1.
In 1985,the famous graph theory expert Erds and Neetil ilconjectured that strong edge-coloring number of a graph is bounded above by 5/4Δ2 when Δ is even and 1/4(5Δ2-2Δ+1) when Δ is odd.
著名图论专家Erds和Neetil对图的强边着色数上界提出了一个猜想:当Δ为偶数时,χ′s(G)≤5/4Δ2;当Δ为奇数时,χ′s(G)≤1/4(5Δ2-2Δ+1),他们给出了当Δ=4的时的最优图。
3) strong edge coloring
强边着色
1.
For a graph G,f is a strong edge coloring if it is proper and any two vertices are incident with different sets of colors.
设 f是图G的一个正常边着色 ,若对G中任意不同的两点u ,v ,着在与u关联的边上的色集和着在与v关联的边上的色集不同 ,则称 f为强边着色。
4) adjacent strong edge chromatic number
邻强边色数
1.
The edge chromatic number and adjacent strong edge chromatic number of graph F_m W_n;
图F_m W_n的边色数和邻强边色数
2.
In this paper,we proved that the total chromatic number and adjacent strong edge chromatic number of Cartesian product graph of cycle Cm and cycle C5n.
证明了圈Cm与圈C5n的笛卡尔积图的全色数和邻强边色数都为5。
3.
The adjacent strong edge chromatic number of join graph of star and path is obtained.
为了解决图的邻强边染色问题中一个图的色数算法问题,通过特别的方法来记图的染色过程,同时分4种情况讨论了星和路联图的邻强边染色问题,指出在染色过程中给定的4种情况的染色方法各不相同,并通过对图的着色得到了星和路联图的邻强边色数。
5) adjacent strong edge coloring
邻强边染色
1.
On the adjacent strong edge coloring of P_m×P_n and P_m×C_n;
P_m×P_n和P_m×C_n的邻强边染色
2.
On the adjacent strong edge coloring of several class of complete 4-partite graphs;
几类完全4-部图的邻强边染色
3.
A proper k-edge coloring of graph G(V,E) is said to be a k-adjacent strong edge coloring(k-ASEC) of graph G(V,E) if every uv∈E(G) satisfy f[u]≠f[v],where f[u]={f(uw)|uw∈E(G)},and x′_(as)(G)=min{k|k-ASEC} is called the adjacent strong edge chromatic number.
对图G(V,E),一正常k-边染色f称为图G(V,E)的k-邻强边染色,当且仅当对任意uv∈E(G),有f[u]≠f[v],其中f[u]={f(uw)|uw∈E(G)},并称x′as(G)=min{k|存在G的一k-ASEC}为G的邻强边色数。
6) quasi-strong edge colourings
准强边着色
1.
If a graph G has a proper edge colourings so that the colouring sets of incident edge at all adjacent vertices in the graph G are different from each other,then such an edge colourings is said to be a quasi-strong edge colourings of graph G.
如果图G已有一个合理边着色,使得图G中所有相邻顶点间的关联边着色集合相互不同,则这种边着色称为图G的准强边着色。
2.
If the graph G had a proper edge colourings and the colouring sets of incident edges at all adjacent vertices of graph G are different from each other,the graph G is said to be a quasi-strong edge colourings.
如果图G有一个合理边上色,使图G的所有相邻顶点的关联边上色集合都互不相同,则称图G为准强边着色。
补充资料:思北邻韩二翁西邻因庵主南邻章老秀才
【诗文】:
乡闾耆宿非复前,老章病死今三年。
朝来出门为太息,不见此翁催社钱。
我比翁虽差识字,向来推择尝为吏,事功自计无一毫,尚不如翁终日醉。
【注释】:
【出处】:
乡闾耆宿非复前,老章病死今三年。
朝来出门为太息,不见此翁催社钱。
我比翁虽差识字,向来推择尝为吏,事功自计无一毫,尚不如翁终日醉。
【注释】:
【出处】:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条