1) strong edge colourings
强边着色矩阵
1.
If a graph G has a proper edge colourings such that the incident edge colourings sets between any two vertices in the graph G are different from each other,then such an edge colourings is said to be a strong edge colourings of graph G.
本文利用强边着色矩阵,讨论了完全图的强边着色及其分类,证明了:当n是奇数时,图Kn是一个第二类强边着色图,且χs′(Kn)=Δ(Kn)+1;当n是偶数时,图Kn是一个第三类强边着色图,且χs′(Kn)=Δ(Kn)+2。
2) quasi-strong edge colourings matrix
准强边着色矩阵
1.
This paper uses the quasi-strong edge colourings matrix to discuss the computation of quasi-strong edge colourings graphs for the complete graphs.
使用准强边着色矩阵讨论了完全图的准强边着色图的计数。
3) The matrix of edge colouring
边着色矩阵
4) strong edge-coloring
强边着色
1.
In 1985,the famous graph theory expert Erds and Neetil ilconjectured that strong edge-coloring number of a graph is bounded above by 5/4Δ2 when Δ is even and 1/4(5Δ2-2Δ+1) when Δ is odd.
著名图论专家Erds和Neetil对图的强边着色数上界提出了一个猜想:当Δ为偶数时,χ′s(G)≤5/4Δ2;当Δ为奇数时,χ′s(G)≤1/4(5Δ2-2Δ+1),他们给出了当Δ=4的时的最优图。
5) strong edge coloring
强边着色
1.
For a graph G,f is a strong edge coloring if it is proper and any two vertices are incident with different sets of colors.
设 f是图G的一个正常边着色 ,若对G中任意不同的两点u ,v ,着在与u关联的边上的色集和着在与v关联的边上的色集不同 ,则称 f为强边着色。
6) edge-color matrix
边色矩阵
补充资料:椐椐强强
1.相随貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条