1) nonlinear mapping method
非线性映射方法
1.
A new method of evaluating structural damping (nonlinear mapping method) and the calculating principle are presented.
提出用非线性映射方法估计结构阻尼并详细阐述计算原理 。
2) non-linear map
非线性映射算法
3) nonlinear mapping
非线性映射
1.
Feature extraction based on nonlinear mapping;
基于非线性映射的特征提取技术研究
2.
Algorithm for Sammon s nonlinear mapping based on fuzzy kernel learning vector quantization;
基于模糊核学习矢量量化的Sammon非线性映射算法
3.
In the paper,the algorithm of a nonlinear mapping is applied to study the gene structure of the leading and lagging strands in the genome of borrelia burgdorferi.
本文采用非线性映射的方法分析伯氏疏螺旋体前导链和后随链上的基因结构,发现基因分布存在明显的差异,同义密码子的使用亦具有明显的倾向性。
4) Non-linear mapping
非线性映射
1.
It adopts the non-linear mapping and also it analyzes the general model of the information hiding.
本文研究了经典的最低有效位方法,采用非线性映射方法对其进行改进,并对信息隐藏一般模型进行分析,提出采用公钥密码的思想来减少隐藏信息的数据量,可以提高信息隐藏的安全性与鲁棒性。
5) iterated nonlinear mapping
非线性迭代映射法
6) nonlinear mapping principal axis analysis method
非线性映射主轴分析法
1.
The nonlinear mapping principal axis analysis method is provided by use of artificial neural networks and mapping technology in this paper.
本文应用人工神经网络的拓扑映射技术,提出非线性映射主轴分析法。
补充资料:连续方法(对非线性算子的)
连续方法(对非线性算子的)
ontinuation method (for nonlinear operators)
连续方法(对非线性算子的)【“.‘..d.meth目(肋咖di理ar.不比.加峪);呵扣理切洲旧..加.毕以盯脚~l,亦称等攀琴拓烤,时参数化族的 近似求解非线性泛函方程的一种方法.这种方法在于通过引进一个取值在一有限区间t。城t(t’的参数t把要求解的方程尸(x)=O拓广成形为F(x,O“O的方程,使得当t=扩时得到原来的方程:F(x,t’)=p(x),同时方程F(x,t0)“0或者能容易地求解,或者早已知道该方程的一个解x0(见【l]一王3]). 拓广了的方程F(x,O二0是对个别的t值:t。,…,t‘二t’逐次求解的.对t二t‘十:的方程的求解是通过某种迭代法(Newton法,简单迭代,参数变值法,[4],等等)从由解t=t‘的方程F(x,t)=0得到的解x‘开始来实现的.在关于泛的每一步应用,例如,n次Newton迭代,就分致公式 ·}、、、一,){,、、(一,、J、}.t{夕 Z一(),一k}L一。·一了‘一l;、吃咬夕!、{】’如果差抓,一rl充分小,则为保证得到r=亡卜,时的解戈十、、x,的值可能是一卜足够好的保证收敛性的初始近似(见!l」,{31,!5」)‘ 在实践中,原来的问题常常自然地依赖于某个参数,该参数就可取作t. 连续方法用于求解非线性代数方程组和超越方程(见【11,!2〕),L卜走及更一般的Banach空间中的非线性泛函方程(见【5卜{7j) 连续方法有时称为参数变值直接法(见【2],16]),也称为直接和迭代参数变值组合法.在这些方法中,通过对参数的微商把构造拓广的方程的解的问题化为求解一个带初值的微分方程问题(Cauchy间题),用常微分方程的数值积分法来解这个问题.在参数变值直接法中把最简单的Euler方法用于该Cauchy问题 么「,、11。,‘、_ 兰之=一1矛_‘万.1、IF‘x.门.钊I‘、、=文、 dIL‘、”」F(x,t卜O的解州t)的近似值x认)=x,(i二1,…,火)可通过下面的恒等式来决定: ·,、一吸I、一,!F可(/,,/,){’F;(X,!,· :二O…,k一lx、就是要求的原来方程p(x)=0的近似解.所有的值或某些值x‘+,的改进可以通过参数变值迭代法(I4」)(或Newton法)来得到 拓广方程通常以下述形式 厂(x,t,、l)=(l一又)F(x(o).2‘、,),x(。)=、,、;在一有限区间0簇只簇l上生成,或在其中用e一,来代替1一又,从而在无穷区间O簇T共刃_匕生成 参数变值法一直用于一大类问题,既用来构造解又用来证明解的存在性(例如,见!3],!41,[6].【7]).[补注]见连续方法(continuatlon method)的补注.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条