1) fractional multilinear singular integrals
多线性分数次奇异积分
1.
In this paper, the authors discusses a class of fractional multilinear singular integrals with rough kernels.
讨论了一类具有粗糙核多线性分数次奇异积分算子在弱Hardy空间的性质,通过原子分解,得到了这类算子在弱Hardy空间的有界性。
2) multilinear singular integral
多线性奇异积分
1.
The boundedness is established on the Herz spaces and the weak Herz spaces for a large class of rough multilinear singular integrals T A bf(x)= p.
建立了一大类粗糙核多线性奇异积分TAbf(x) =p 。
3) multilinear singular integral operator
多线性奇异积分算子
1.
The continuity for multilinear singular integral operators on Hardy and Herz spaces;
多线性奇异积分算子在Hardy和Herz型空间的连续性
2.
Using the Fefferman-Stein inequality and the properties of the A∞ weight functions,the Sharp estimates are obtained and weighted inequalities above any weights for the multilinear singular integral operators with Dini type kernels.
利用Fefferman-Stein不等式及A∞权函数的性质,得到了一类核满足Dini型条件的多线性奇异积分算子的Sharp估计和关于任意权函数的加权不等式。
3.
In this paper,the boundedness for some multilinear singular integral operatorswith variable Calderón-Zygmund kernel on Hardy and Herz type Hardy spaces are obtained.
讨论了带可变Calderón-Zygmund核的多线性奇异积分算子在Hardy空间和Herz型Hardy空间中的有界性。
4) Multilinear oscillatory singular integral
多线性振荡奇异积分
1.
A class of multilinear oscillatory singular integral operators is studied and their boundedness on Lebesgue spaces L p(R)(1<p<∞) is obtained.
考虑了一类多线性振荡奇异积分算子并获得了其在一维 Lebesgue空间 Lp(R) (1
5) multilinear fractional integral
多线性分数次积分
1.
Uniform boundedness of multilinear fractional integral operators;
多线性分数次积分算子的一致有界性
2.
We give a A_p-type condition which are sufficient for two-weight weak type (p,q)inequalities for multilinear fractional integral operators.
本文给出了双权函数的一个A_p型条件使得多线性分数次积分满足双权弱型(p,g)不等式。
6) singular and fractional integrals
奇异和分数次积分
补充资料:输出反馈(见线性二次型次优控制)
输出反馈(见线性二次型次优控制)
output feedback
3h日c卜口fon以以{输出反馈型次优控制。(output王eedbaek)见线性二次
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条