说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 空间随机场
1)  spatial random field
空间随机场
2)  spatial correlative random wind field
空间随机风场
3)  random space
随机空间
1.
Method for structural reliability analysis in generalized random space;
广义随机空间内的一次可靠度分析方法
4)  temporal-spatial random field
时-空随机场
5)  stochastic subspace
随机子空间
1.
Parameter identification of structures based on stochastic subspace and its validation in shaking table testing;
基于随机子空间的结构参数识别及振动台试验验证
2.
Authors presented an identified method of arch bridge modal parameters based on stochastic subspace combined with stabilization diagram for the presence methods having shortcomings for example false modes.
为了避免目前常用的结构模态参数识别方法容易出现虚假模态等缺陷,提出了一种将随机子空间法与稳定图法相结合的模态参数识别方法。
3.
To solve this problem, accelerations of carbodies and bogies of the vehicles are measured,and vehicle modal parameters are identified with the stochastic subspace identification method.
针对装用SW—160型转向架提速客车低频晃动的问题,笔者在线实测了该型客车车体及转向架振动加速度,并运用随机子空间辨识算法对车体的刚体振动模态进行了辨识。
6)  random subspace
随机子空间
1.
Based on random subspace,a complementary subspace linear discriminant analysis (LDA) approach is presented for face recognition.
基于随机子空间,提出了一种用于人脸识别的互补子空间线性判别分析方法。
2.
A multi-agent distributed intrusion detection method based on random subspace method is put forward.
提出了一种基于随机子空间的多Agent分布式入侵检测方法。
3.
In this paper,we propose a classifier ensemble algorithm based on optimal random subspace(CEORS),this algorithm firstly uses wrapper feature selection and LSA technology to optimize the selected feature subspace,then constructs the basic classifier using the optimal feature subspaces,and at last gets ensemble classifier by integrate all the basic classifiers.
提出了基于优化的随机子空间分类集成算法CEORS,该算法通过运用封装式特征选择和LSA降维两种方法对随机选择的特征子集进行了优化,并运用优化的特征子空间进行分类器的集成。
补充资料:广义随机场


广义随机场
random field, generalized

【补注】亦见随机场(m记om field).广义随机场[皿日田】云dd,90.司加闭;cjly,‘HOenO二0606川e“Hoel,广义随机过程(罗能阁讼分stochas康Proo巴洛) 光滑流形G上的随机函数(mndom丘Lnction),它的典型的实现是定义在G上的广义函数.更确切地说、设G是一C。流形(光滑流形),再设D(G)是定义在G上的紧支撑的无限次可微函数空间,具有在一致紧支撑上的函数列及其所有导数序列的一致收敛性的通常拓扑.这样,就可以在G上用给定的从D(G)到定义在某个概率空间(Q,黔,川上的随机变量空间L。(Q,忍,拜)的连续线性映射 D(G))L‘,(Q,忍,拼),职~九,中6D(G)来定义广义随机场,这里Q是非空集合,黔是O的子集。代数,“是定义在毋上的概率测度,而随机变量空间L。(Q,黔,拜)具有依测度收敛(conVergenCeinn笼尧巧ure)拓扑(〔7]).当概率空间是G上广义函数空间D‘(G),具有由D‘(G)中柱集生成的。代数黔。(见广义函数空间(罗配耐刘丘m由。留,印aceof),柱集(q越n由rset))且映射由 j,(T)二(T,甲),T‘D‘(G),甲〔D(G),给定的情形,广义随机场{凡:职〔D(G)}称为典型的(以加灿以1).任何一个在有限维流形G上的广义随机场概率同构于某一(唯一的)G上的典型随机场(见[2」). 这个定义容许很多自然的修正.例如,可以考虑向量值广义随机场或者在定义中用G上的检验函数的更广的空间(例如,在G=R”,n=l,2,…,的情形,S(R”)一C田可微函数连同其导数都比任意负幂{xl人,k=一1,一2,…,x〔R”下降迅速,这样的函数所成的空间)来代替空间D(G). 广义随机场的概念包括其实现是通常函数的古典随机场及过程.这一概念出现于见年代中期,当时许多自然的随机结构显而易见地不能够用古典随机场给予充分简单的表述,而可以用广义随机场的语言给出简单、优雅的描述.例如,D(Rn),n=l,2,二,上的任意正定双线性形(,、,,:)一丁丁、(x,,xZ),1(x,),2(、2)dxldxZ, R,Rn职,,毋2‘刀(R”),其中评(x,,xZ)是两个变量的正定对称广义函数,决定一个唯一的R”上具零均值的C透理粥广义随机场{几:中任D(R”)},这个场的协方差是 J几.几2“。一‘,】,毋2’,其中#是D‘(R”)上与这个场对应的概率测度.仅当函数评(xl,xZ)充分好(例如连续有界)时,这个广义随机场才能转化成古典的.另一个例子是R”上的广义随机场(见〔6』),其中没有古典场. 由于70年代早期发现了构造物理量子场的问题和R”(n>l)上MaPxoB广义随机场之间的联系,研究广义随机场(和特别是Ma琳oB场)的兴趣近年来一直在增长(见【5】).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条