1) reflexive matrix
自反矩阵
1.
Generalized reflexive matrix on rings and its application.;
环上广义自反矩阵及其应用
2.
An elementary reflexive matrix is proposed and its applications to matrix eigenvalue problem are presented.
构造了一个初等自反矩阵并给出了它在特征值计算中的一个应用。
3.
At last,the reflexive matrix contracting based square algorithm is presented for calculating the transitive closure of the general binary relation,and the procedure of it is showed through an example.
首先,介绍布尔矩阵传递闭包的概念及计算问题;随后,分析布尔矩阵的传递闭包和由该布尔矩阵与单位矩阵取并所得到的自反矩阵的传递闭包之间的关系;最后,利用上述结果给出一种求解布尔矩阵传递闭包的基于自反矩阵构造的平方算法,并通过实例说明了其具体计算过程。
2) reflexive matrices
自反矩阵
1.
It was proved that these two special forms of generalized centro-symmetric matrices were reflexive matrices.
最后给出两种特殊类型的广义中心对称矩阵,同时也证明了这两种特殊的广义中心对称矩阵是自反矩阵。
3) reflexive matrix solution
自反矩阵解
1.
The reflexive matrix solution of the matrix equations is solved.
求矩阵方程组AiXBi+CiXDi=Fi(i=1,2)的自反矩阵解。
4) quasi reflexive matrix
准自反矩阵
1.
This paper has proved that adjA=A(i(A),the relation between the adjoint matrix adjAand convergent index i(A) for a quasi reflexive matrix A(a matrix when the condition a(11)=…a(nm)a(ij) is met)over a distributive lattice L,and has obtained a necessary and sufficientcondition for the idempotency of A,namely A=adjA,and some properties related to th.
证明了分配格L上的准自反矩阵A(满足条件a(11)=···a(mn)≥a(ij)的矩阵)的伴随矩阵adjA与收敛指数i(A)之间的关系adjA=A(I(A)。
6) generalized antireflexive matrix
广义反自反矩阵
1.
Let P∈C~(m×m),Q∈C~(n×n) be generalized reflection matrices, A∈C~(m×n) is called to be a generalized antireflexive matrix if A=-PAQ.
设P∈Cm×m、Q∈Cn×n是广义反射矩阵,若A∈Cm×n 满足A=-PAQ,则称A为关于矩阵对(P,Q)的广义反自反矩阵; 所有m×n阶关于矩阵对(P,Q)的广义反自反矩阵的全体记为Cm×na (P,Q)。
补充资料:自反性
自反性
reflexivity
自反性[reflex州ty:pe如e砍”BH0cT“」 二元关系的一个性质.集合A上的二元关系(场-nary relation)R是自反的(re份xive),如果对所有的a‘A有aRa.自反关系的例子有相等关系,等价关系,序关系.T.c.中呻aHoBa撰赵希顺译可驳公式[re加妞b.forlnl山;onponep狱”Ma,加pMy-,],形式可驳公式(formally refutahlefo功叫da),在给定公式系统中 其否定可以在给定系统中推导出的闭公式. B .H.fpH山班n撰【补注】给定逻辑系统中的闭公式A是形式可判定的(由c翻巨b比)(见可判定公式(de‘dable ror丽a3,’茹果A是可证的或可驳的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条