1) least-norm reflexive matrix solution
极小范数自反矩阵解
1.
By this iterative method,the solvability of the equations can be determined automatically,and its reflexive matrix solution or least-norm reflexive matrix solution can be got within finite steps.
该算法可以判断矩阵方程组是否有自反矩阵解,并在有自反矩阵解时,可以在有限步迭代计算之后得到矩阵方程组的一个自反矩阵解或者极小范数自反矩阵解。
2) least solution matrix
极小解矩阵
3) reflexive matrix solution
自反矩阵解
1.
The reflexive matrix solution of the matrix equations is solved.
求矩阵方程组AiXBi+CiXDi=Fi(i=1,2)的自反矩阵解。
4) least-norm anti-symmetric solution
极小范数反对称解
1.
By this iteration method,the solvability of the equation over anti-symmetric X can be determined automatically,when the equation is consistent over anti-symmetric X,its least-norm anti-symmetric solution can be obtained by choosing a special kind of initial iteration matrix.
选取特殊的初始矩阵,可求得极小范数反对称解。
5) minimum norm solution
极小范数解
1.
According to the characteristic of the inverse problems of ECT, the minimum norm solution was improved using regularization technique, and the stability of the numerical solution was analyzed via singular value decomposition principle.
在分析极小范数解的基础上,针对电容层析成像(ECT)逆问题的特点,利用正则技巧对其进行改进,并利用奇异值分解定理分析了这种改进的数值稳定作用。
2.
Furthermore,the results were applied to the relative inverse eigenvalue problem,and the minimum norm solution for the inverse eigenvalue problem was presented.
同时也把所得结论应用到相应的逆特征值问题,并给出了逆特征值问题的极小范数解。
3.
By further theoretical proof and analysis, it is concluded that at any k th step, the estimated values of the unknowns converge to the minimum norm solution if the equations composed by the preceding k sample data are compatible equations or minimum norm least square solution in case that they are contradictory equations,Moreover, the solut.
本研究对递推最小二乘算法进行了理论证明及分析,指出了在任意第k步,未知参数估计值收敛于前k组数据的极小范数解(如果前k组数据所组成方程组为相容方程组)或者极小范数最小二乘解(如果前k组数据所组成方程组为矛盾方程组),并且此解是唯一的;仿真结果同样也验证了该结论的正确性。
6) minimum-norm solution
极小范数解
1.
An iterative method for minimum-norm solution of symmetric singular linear equations Ax=b is proposed.
给出了求对称奇异线性方程组Ax=b极小范数解的迭代算法,其迭代公式为此处/为秩是,r(r<n)的n阶实对称矩阵,E为n阶单位阵,b为n维列向量,m为正整数,ε为正实数。
补充资料:Luxemburg范数
Luxemburg范数
Luxemburg nonn
L峨曰血叱范数〔I一血叱~;J如盆c服6yP住肋p-Ma] 函数 ,‘x!.(M,一、{*:*>o,丁、(,一’x(:))‘:‘1}, G这里M(u)是关于正的u递增的偶凸函数, 怒“一’M(u)一忽u(M(u))一,一0,对“>0,M(“)>0,且G是R”中的有界集.此范数的性质曾由W.A.J.h以油比飞〔11作了研究.L~b鸣范数等价于O正ez范数(见0口厄空间(C旧允2 sP创芜)),且 I{x}I(,)簇1 lx}I,蕊2 11 x 11(、).如果函数M(u)和N(u)是互补(或互为对偶)的(见O市口类(Or比zc地”‘、则 ,,·,,(一sun{)·(!,,‘!,“!:,,,,,《一‘,}·如果z‘(t)是可测子集E CG的特征函数,则 !l:二11‘M、-一下尖二一. ““启”‘川M一’(l/n篮‘E)’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条