1) L-quasi-upper-lower solution
L-拟上下解法
2) L-quasi-upper and lower solution
L-拟上下解
1.
By using the method of L-quasi-upper and lower solutions and the mixed monotone iterative technique,the problem of existence and uniqueness of solutions for periodic boundary value problems of a second order nonlinear integro-differential equations in Banach spaces is investigated,under appropriate conditions.
利用L-拟上下解方法和混合单调迭代法,在适当的条件下,研究了Banach空间中一类非线性二阶微分积分方程周期边值问题解的存在性和惟一性,并给出了近似解的迭代序列和误差估计式。
2.
The existence and uniqueness of solutions for periodic boundary value problems of nonlinear integro-differential equations in Banach spaces are investigated,by establishing a differential-integral inequality and using the method of L-quasi-upper and lower solutions and the mixed monotone iterative technique.
利用L-拟上下解方法和混合单调迭代法,通过建立一个新的积分微分不等式,研究了Banach空间中积分微分方程周期边值问题解的存在唯一性,并给出了解的迭代序列和误差估计式。
3) L-quasi-upper and lower solutions
L-拟上下解对
4) quasi-upper and lower solutions
拟上下解
1.
By using the monotone iteration scheme with quasi-upper and lower solutions, the terminal value problem of differential equations in Banach spaces is discussed:u′=f(t,u,u),0≤t≤1u(1)=x_1and the results of existence and their uniqueness are obtained.
通过拟上下解的单调迭代过程,讨论了Banach空间中的一阶常微分方程终值问题u′=f(t,u,u),0≤t≤1u(1)=x1获得了该问题的解的存在唯一性。
2.
In this dissertation, combining the method of upper and lower solutions forordinary differential equations with the quasi-upper and lower solutions, we considerthe existence and uniqueness of solutions of two classes of ordinary differentialequations.
本文结合上下解方法,在文献中拟上下解方法的基础上,应用其研究了两类常微分方程。
5) quasi-upper and lower solutions
拟上下解对
6) method of upper and lower solutions
上、下解法
1.
By using the method of upper and lower solutions,we obtain the existence of solutions for boundary value problem of second order integro differential equations of Volterra type in a normal cone.
利用上、下解法在正规锥上证明了二阶非线性Volterra型积分微分方程边值问题解的存在性。
补充资料:八方上下
【八方上下】
(术语)谓四方,四维,上下之十方也。
(术语)谓四方,四维,上下之十方也。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条