1) Duffing differential equation
Duffing微分方程
2) Duffing equation
Duffing方程
1.
Study on frequency solution of nonlinear Duffing equation;
非线性Duffing方程自由振动频率解分析
2.
Research on self-synchronization and different structure synchronization based on the Henon system and the Duffing equation;
基于Henon系统和Duffing方程自同步与异结构同步的研究
3.
Exact solution of Duffing equation with hardening restoring force;
渐硬恢复力型Duffing方程的精确解法
3) duffing equation
duffing型方程
1.
Periodic solutions to a type of Duffing equation with complex deviating argument;
一类具复杂偏差变元的Duffing型方程的周期解
2.
This paper investigates the Duffing equation ■+f(x(t))+g(x(t-τ))=p(t).
本文考虑Duffing型方程■+f(x(t))+g(x(t-τ))=p(t),利用分析的技巧和非紧性测度的k-集压缩定理,得到了此方程至少存在一个T周期解的充分判据。
3.
In this paper,we use the coincidence degree theory to get new results on the existence and uniqueness of T-periodic solutions for a kind of Duffing equation with two deviating arguments of the formx″+g_1(t,x(t-τ_1(t)))+g_2(t,x(t-τ_2(t)))=p(t).
利用重合度理论研究了一类具有两个偏差变元的Duffing型方程x″+g1(t,x(t-1τ(t)))+g2(t,x(t-2τ(t)))=p(t)。
4) Duffing-Holmes equation
Duffing-Holmes方程
5) Duffing equations
Duffing方程
1.
In this paper, the existence of odd-harmonic solutions for second order Liénard equations and even and odd, odd-harmonic solutions for second order Duffing equations are studied by using degree theory and some known results are improved.
利用度理论研究了二阶Liénard方程奇调和解的存在性和二阶Duffing方程具有偶性和奇性的奇调和解的存在性,改进了一些已有的结果。
2.
In 1982, DING Tongren gave a basic theorem about existence of periodic solutions of Duffing equations with double resonance.
198 2年 ,关于带有双侧共振的Duffing方程周期解的存在性问题 ,丁同仁采用像平面分析法给出了一个基本定理· 该文使用Leray_Schauder延拖原理给出一个简化证
3.
The nonlinear oscillations of the Duffing equations are studied by means of the method of linearization and correction, and the approximate solutions are compared with the exact solutions.
本文应用线化和校正法,研究了Duffing方程的非线性振动,分别求出了Duffing方程非线性振动周期的精确解和近似解,利用Maple9。
6) Duffing Equation
Duffing 方程
补充资料:微分方程的差分方程逼近
微分方程的差分方程逼近
approximation of a differential equation by difference equations
微分方程的差分方程通近【app拟。mati.ofa山价犯n-ti习闪姗柱.by山血魂.理equa西姗;即即肠。砚田朋.朋巾卜碑四.别吸.。印冲.旧e朋,pa3I.ecTll目M] 微分方程用关于未知函数在某种网格上的值的代数方程组的逼近,当网格的参数(网络、步长)趋于零时可使得逼近更加精确. 设L(Lu可)是某个微分算子,几(L声。=几,。。任叭,人“凡)是某个有限差分算子(见徽分算子的差分算子通近(aPProximation of a dilferential operator by dif-feren沈。perators”.如果算子L、关于解u逼近算子L,其阶为p,即如果 }}Lh[u]*I}汽=o(hp),那么有限差分式L声、二0(o任凡)称为关于解“对微分方程Lu=O的P阶逼近. 构造有限差分方程L声*=0关于解u逼近微分方程Lu=0的最简单例子是将Lu的表达式中每个导数用相应的有限差分来代替. 例如,方程 _子“.,、血._,_八_一n Lu三书舟+P(x)于+q(x)u=U ~“一dxZr‘~产dxl‘’可用有限差分方程 L‘“‘三生理二丛吐丛二+ h‘ U~丰I一U,_I_ +尸(x们厂竺二兹巴几十,(x功)u朋一o作二阶精度逼近,其中网格几。和几;由点x.“。h组成(m是一整数),“.是函数u*在点x.的值.又,方程 au aZu L“三共牛一斗冬二0, --一ar ax,可用关于光滑解的两种不同的差分近似来逼近: _.月+1_”月气.月上.” 一门、“nt4用“用十l‘“阴l“用一I八 于九‘(撇式格式(exPlie,}seheme))和! “几’l一嗽试,‘l}一翔二,曰衅,‘从 拭’价二一一-一—一了一--一一几,(隐式格式(一mf)liczt scheme)),其中网格D*。和D*:由点(x。,甲=(川入,似)组成,:二rhZ,r二常数,巾和n是整数,。二是函数翻、在网格点(x,,t。)的值.存在这样的有限差分算子L,它对微分算子L的逼近,仅关于方程L。一0的解。特别好,而关于其他函数则差一些.例如,算一子L*L*U。三兴,·卜·夸卫一尹{刁内队引〔其中汀二·。州一随甲‘气))关f任意的光滑函数。(*)是算 广L- d仪 L“一…一甲〔戈,“)Z(工) 办的一阶逼近(_关于八)、而关于方程大u=O的解却是二阶逼近(假定函数:,充分光滑)在利用有限差分方程与。。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条