1) Muskingum equation
马斯京根方程
1.
The parameter of Muskingum equation is usually ascertained by the trial way that were complex and the optimized results not gotten.
常用的试算法在确定马斯京根方程参数时一般得不到最优结果,且计算较繁杂。
2) Muskingum
马斯京根
1.
With the application of Muskingum routing method,Muskingum water-level simulating method and diffusion wave nonlinear water-level method,flood is forecasted and regulated in the part basin between Wa.
采用马斯京根法、马斯京根水位模拟法和扩散波非线性水位法,对淮河干流王家坝至鲁台子区间具有行蓄洪区流域洪水进行预报。
2.
In order to solve the problem of complexity and poor accuracy for parameter estimation in Muskingum model,the chaos was incorporated into particle swarm optimization,chaotic particle swarm optimization algorithm to estimate the parameter of Mustingum model was set up.
针对目前马斯京根模型参数率定中存在的求解复杂、精度不高等问题,本文将混沌搜索机制引入粒子群优化算法中,构建混沌粒子群优化算法对马斯京根模型参数进行率定。
3) Muskingum method
马斯京根法
1.
The paper approaches and analyzes the application of linear regression method,Muskingum method and method of confluence coefficient to the calculation of low flow of Ning-Meng section of the Yellow River based on the principle of hydrology of flow routing and taking a day as time step.
基于流量演进的水文学原理,以日为时间步长,分析探讨了线性回归法、马斯京根法和汇流系数法在黄河宁蒙河段枯水流量演算中的应用。
2.
Then the general design flood with flood peak of 1132m3/s is gained by Muskingum method and sup.
根据工程所在流域实际地理、水文等特点,将流域分为4个分区,利用降雨和流量资料推求出工程所在区域不同分区的设计洪水,而后利用马斯京根法和流量过程叠加原理得到目标断面设计洪峰流量1 132 m3/s,该结果与历史洪水和以往设计成果进行对比验证,确定计算结果合理可靠,符合未来洪水变化情势。
3.
Taking gradient and slope angle as main factors,a watershed is discretized into some sub-catchments according to natural draining divide,and aiming at characteristics of the research area,a rainfall-runoff distributed hydrological model orienting to catchment scale is established in this thesis with combination of runoff yielding and water routing model of SCS and Muskingum method.
针对研究区的水文、气象特点,本文以坡度、坡向为下垫面主要因素,按照集水区自然分水线划分子流域的流域离散方法,将SCS产、汇流模型与马斯京根法相结合建立了基于流域尺度的次降雨-径流分布式水文模型。
4) Muskingum routing model
马斯京根模型
1.
Chaos high efficient genetic algorithm for parameter optimization of Muskingum routing model;
混沌高效遗传算法在马斯京根模型参数优选中的应用
2.
Differential Evolution Algorithm for Parameter Optimization of Muskingum Routing Model
差分进化算法在马斯京根模型参数优选中的应用
3.
By making use of the ant colony algorithm in the continuous space optimization problems,the parameter estimation of Muskingum routing model is solved.
研究了一种可用于求解连续空间优化问题的蚁群算法策略,针对洪水演算的马斯京根模型参数估计问题,应用连续性空间优化问题的蚁群算法模型进行了求解。
5) Muskingum model
马斯京根模型
1.
For the parameter estimation problem of flood calculation of Muskingum model,first,it is summed up as a non-linear parameter optimization problem,and then solved by adaptive accelerating differential evolution(AADE).
针对洪水演算的马斯京根模型参数估计问题,首先将其归结为非线性参数优化问题,然后利用自适应加速差分进化算法进行求解。
6) Muskingum-Cunge
马斯京根-康吉
1.
Stability Condition Analysis of Muskingum-Cunge Flood Routing Method;
马斯京根-康吉洪水演算方法的稳定性分析
补充资料:杜亥姆-马尔居莱斯方程
分子式:
CAS号:
性质:表示二组分溶液中两组分的蒸气压随成分变化的关系式。其中p为饱和蒸气压,x为摩尔分数,x1+x2=1。上式可自吉布斯-杜亥姆方程得到。杜亥姆-马尔居莱斯方程指出,组分1的蒸气压随成分的变化趋势与组分2相同。
CAS号:
性质:表示二组分溶液中两组分的蒸气压随成分变化的关系式。其中p为饱和蒸气压,x为摩尔分数,x1+x2=1。上式可自吉布斯-杜亥姆方程得到。杜亥姆-马尔居莱斯方程指出,组分1的蒸气压随成分的变化趋势与组分2相同。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条