1) singular perturbation theory
奇异扰动理论
1.
Further simplification of the control design process could be realized by dividing the rotorcraft dynamics into translational dynamics and attitude dynamics by using singular perturbation theory.
针对复杂的超小型旋翼机系统,利用牛顿-欧拉方法建立了其系统动力学模型,包括了希勒翼的动力学;为了简化控制器设计,利用奇异扰动理论,把复杂的动力学模型降阶为两个子系统,即平移动力学和姿态动力学;采用非线性逆动力学设计了输出跟踪控制器。
2) geometric singular perturbation theory
几何奇异扰动理论
1.
For vector disease model with distributed delay,when the distributed delay kernel is the general Gamma distribution delay kernel,the existence of travelling wave solutions is obtained by using the linear chain trick and geometric singular perturbation theory.
对于带有分布时滞带菌者的疾病模型,当分布时滞核是—般的г分布时滞核时,通过线性链技巧和几何奇异扰动理论,本文证明带菌者的疾病模型行波解存在性。
2.
Under the condition that the distributed delay kernel is the strong kernel,by the linear chain trick and geometric singular perturbation theory,the existence of travelling wave solutions for the two-species competition-diffusion model with nonlocal delays is obtained.
在分布时滞核是强核的条件下,通过线性链技巧(linear chain trick)和几何奇异扰动理论,获得带有非局部时滞2个物种竞争扩散模型行波解的存在性。
3) normal hyperbolic geometric singular perturbation theory
正规双曲奇异扰动理论
4) singularly perturbed
奇异扰动
1.
By means of inverse proof, it is proved that u ε=m 1p-1 ε ω ε exists at least two local maximum points for a singularly perturbed Neumann problem on a symmeric domain.
利用反证法证明 ,在奇异扰动Neumann问题上 ,uε =mε1p- 2 wε 至少有两个局部最大值点 。
2.
In this paper, symmetric solution with exactly one local maximum point is constructed for a singularly perturbed Neumann problem.
讨论了在对称区域上 ,奇异扰动Neumann问题只有一个局部最大值点的对称解 。
5) singular perturbation
奇异扰动
1.
To solve the stability analysis problem aris-ing from the integral term,we employ the singular perturbation theory to analyze the stability of the resulting closed-loop system.
闭环系统的稳定性证明采用了奇异扰动理论,以解决积分项的存在带来的稳定性分析问题。
2.
Based on the singular perturbation theory, the flight control system of MRV was divided into two loops, and the TLC controllers were designed for both loops.
基于奇异扰动原理,将MRV飞行控制系统分为内外两个回路,并且为两个回路都设计了轨迹线性化控制器。
6) singular perturbation theory
奇异摄动理论
1.
Necessary conditions for invoking the singular perturbation theory in the theory of the PEBS method;
PEBS法理论中应用奇异摄动理论的必要条件
2.
Based on singular perturbation theory and eigenvalue perturbation theorem,steady state stability laws are derived for multi-time scale system,whose order is reduced by neglecting fast dynamics and fixing slow dynamics.
基于奇异摄动理论及矩阵特征值扰动定理,推导得出多时间尺度系统在小扰动作用下,采用忽略快动态或固定慢动态降阶时,降阶前后系统静态稳定性的一般规律,并给出一种使该稳定性规律成立的奇异摄动参数范围的计算方法,从而提出一种小扰动作用下多时间尺度系统的降阶原则,该降阶原则能保证降阶前后系统的静态稳定性一致。
补充资料:扰动理论
扰动理论
pertutfaation theory
范数相对为小),另一些则可以看作是快的(fast)(即导数范数相对大).这种系统的广为人知的例子有描述电路或化学反应的常微分方程;例如,在后一种情况下,时间尺度可以直接与所涉及的反应速率相关.这些问题通常可以建模为一个多层系统,而时间尺度之比则用(小)参数来表示.这种系统的形状是 dX 山雌Ll,“,,’‘’,“·)万丁=jL‘,x),这里rl~R”,忍CR,。2,…,。。是小的正常数.这类微分方程的一个例子是标量常微分方程 砂x”于,、韶x “言户十,鱿aj(‘,x)翁一o·相当一般的情况是考虑二层系统 dx 毛于“f(x,y,t), dt £平一。(*,,,:)、 dt对这个常微分方程组应该给出两个初值(或边值)条件.特别有趣的是当。洛0时解(x,y)的性态.为避免混淆,为表示此解依赖于。,对解加上标£.令£二O,将得到所谓简化方程(耐uced闪Uation).如果(刁g/刁夕)(尸,y〔,,t)在相关的区域上非奇异,则可以形式地解出尹而得到只含x0的一阶常微分方程.很清楚,这时只需要一个初值(或边值)条件,所以一般说来,降阶问题的解不会满足另一个初值或边值条件.于是,这就可以解释奇异扰动(51爬刘ar详durhation)一词,因为(x‘,夕‘)到(xo,夕o)的收敛决非一致的,见〔AS].然而,给出了降阶解以后,可以设法找一个快解成分,从已给的初值或边值数据移动到一个“接近”于(尸,y“)的积分曲线,这样把(厂,丫)与(x“,J;0)连接起来.这件事常称为“边界层效应’(bou以纽即刁a界r effect),它在那个初值点或边值点的。邻域(至少是与。相关的区域中)很引人注意.使用上述的关于降低解的做法有一些解析技巧.这里,降阶解(称为外解(outersolution))在层内修正为一瞬态解(让出犯记以solution)(称为内解(in沉r solutio幻)),其方法是在层内与层外作幂级数展开.为了使这些成分逼近于所要求的解,就需要将它们匹配起来.所以这个技术就称为匹配渐近展开(mat-cl〕已as扣IPtotic expansions). 层或瞬态不只可能产生于边界处,也可能产生于区域内部.这是气体动力学中众所周知的现象,这里激波时常可以描述为这种问题的内部的层(见激波的数学理论(sh民k~月拙the叮以tical thi”卿of).举一个例,考虑粘性B切电e巧方程 £y”一yy’一凡夕二O,又〔R扰动理论【.姆由川脑腼血妈r;助3M灿e。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条