说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 对称双正阵
1)  symmetric and copositive matrix
对称双正阵
2)  symmetric and copositive plus matrix
对称双正加阵
1.
When the matrix A involed in the linear complementarity problem is a symmetric and copositive plus matrix or a symmtric and strictly copositive matrix, the sequence generated by the algorithm exists an accumulation, which solves the linear complementarity problem.
并且,当互补问题中的矩阵为对称双正加阵或严格对称双正阵时,算法产生的迭代序列存在子序列收敛到互补问题的解。
3)  Symmetric copositive matrix
对称双正矩阵
4)  symmetric positive coefficient matrix
对称正定阵
1.
A graph model for Cholesky factorization dealing with symmetric positive coefficient matrix is proposed.
通过对Cholesky分解法求解线性方程组的分析 ,建立Cholesky分解法三角化对称正定阵的图模型 ,并基于该模型及Mesh结构P/G网络的自身特点 ,提出一个P/G网快速分析算法 实验证明 ,该算法能大大降低Mesh结构P/G网络的分析运算时间和内存占
5)  bisymmetric matrix
双对称矩阵
1.
In this paper,the inversable matrix solution of a kind of real matrix equation X~△AX=A is considered,where A is a inversable bisymmetric matrix,X~△is bisymmetric transposed matrix of X,and their general solution forms are derived; the bisymmetric solution of a kind of real matrix equation XAX=A is considered,and their general solution forms are derived too.
本文讨论了实矩阵方程X~△AX=A(A为非退化实双对称矩阵,X~△为X的双转置矩阵)的非退化解问题,并给出一般解的形式;同时讨论了实矩阵方程XAX=A的双对称解问题,并给出了一般解的形式。
2.
By this iterative method,the least squares bisymmetric solution can be obtained within finite iterative steps in the absence of round off errors,and the solution with least norm can be got by choosing a special initial bisymmetric matrix.
同时,也能够给出指定矩阵的最佳逼近双对称矩阵。
3.
This paper has discussed the generalized inverse eigenvalue problem of centrosymmetric matrix,anti-centrosymmetric matrix and bisymmetric matrix.
本文讨论了在谱约束条件下中心对称矩阵、反中心对称矩阵和双对称矩阵的一般化逆特征值问
6)  bisymmetric matrices
双对称矩阵
1.
Least-square solutions of inverse problems for bisymmetric matrices;
一类双对称矩阵反问题的最小二乘解
2.
Least-squares solution for the inverse problem of real matrices、symmetric matrices and bisymmetric matrices are studied in this thesis.
本文研究了子阵约束下实矩阵、实对称矩阵和双对称矩阵反问题的最小二乘解,全文主要包括以下内容。
3.
thesis and mainly discuss the following problems:What we mainly discussed in the second chapter as follows:(1) S1,S2 are sets of symmetric orth-symmetric matrices;(2) S1,S2 are sets of bisymmetric matrices;(3) S1,S2 are sets of anti-.
S_1,S_2为双对称矩阵; 3。
补充资料:双(仲丁醇)正硅酸三乙基正硅酸酯铝盐
CAS:68959-06-8
分子式:C14H33AlO6Si
分子质量:352.47
中文名称:双(仲丁醇)正硅酸三乙基正硅酸酯铝盐
英文名称:bis(2-butanolato)(triethyl orthosilicato-O''')-Aluminum
di-sec-Butoxyaluminoxytriethoxysilane
bis(2-butanolato)(triethyl orthosilicato-o''')-aluminum
diethoxysiloxane-s-butylaluminate copolymer
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条