1) CMAC
小脑神经网络
1.
A three-layer CMAC is built using the position information of a repairing area obtained from robot teaching as the input vector of CMAC network input space,and using the extended B sample bar function as the basic function of CMAC nonlinear map,and CMAC is trained with a united single variable function exp(),to design and simulate the program with Matlab language tool box and editor.
提出基于Matlab-CAMC实现水轮机修复机器人工作空间修复区域仿真的方法,构造了一种3层小脑神经网络(CMAC),以机器人示教得到的修复区域位置信息为CMAC网络输入空间的输入向量,用扩展B样条函数作为CMAC非线性映射的基函数,用合并单变量函数exp()训练CMAC,用Matlab语言工具箱和编辑器进行程序设计并仿真,为机器人的运动规划、轨迹规划和工艺参数规划提供了依据。
2) cranial nerve network
脑神经网络
1.
At the inspiration of the human cranial nerve network and the artificial nerve network, the paper puts forward a structure of the curriculum system using analogue cranial nerve network, which is called the distributed curriculum system.
在人类大脑神经网络和人工神经网络的启示下,提出了模拟脑神经网络的课程体系结构,即分布式课程体系结构。
3) CMAC Neural Network
小脑模型神经网络
1.
A new intelligent optimized dispatching method is proposed, and reinforcement learning control is applied in elevator group control system, in which CMAC neural network based on traffic pattern recognition is designed as the controller, in order to optimize the passengers’ average waiting time.
提出一种新的智能优化调度方法,将再励学习控制运用到电梯群控系统中,采用基于交通模式识别的小脑模型神经网络作为控制器,以乘客平均候梯时间最短为控制目标设计出电梯群控系统的控制方案。
4) CMAC
小脑模型神经网络
1.
Research about compound control based on CMAC and PID;
基于小脑模型神经网络与PID的复合控制研究
2.
Combining characteristics of switched reluctance motors(SRM),this paper presents a controller architecture and learning algorithm for controlling SRM s torque using cerebellar model articulation controller(CMAC) neural network.
结合变磁阻电动机的工作特点,提出了应用小脑模型神经网络控制SRM转矩的控制器结构和改进的学习算法。
3.
This paper presents energy management strategy on the basis of CMAC,and analyzes the influence of CMAC parameters on the performance of controller.
提出了基于小脑模型神经网络(CMAC)控制器的能量管理策略,分析了CMAC参数对控制器性能的影响。
5) Fuzzy CMAC
模糊小脑神经网络
6) cerebellar model articulation controller
小脑模型神经网络
1.
After combining the optimal control theory with Gauss basis function cerebellar model articulation controller(GCMAC) neural network,an optimal control strategy on electro-hydraulic loading system was proposed,which made the closed-loop system gradually stable.
将最优控制理论与高斯基函数小脑模型神经网络相结合,提出了电液伺服加载的自适应最优控制策略,该控制策略能够确保闭环系统具有渐近稳定性。
2.
According to the asymmetry and nonlinearity of the symmetrical valve controlled asymmetrical piston system, in order to improve control precision of the system, the work characteristic of the system is analyzed, then a new control method based on the cerebellar model articulation controller(CMAC) is advanced, and the CMAC compound controller is designed.
针对对称阀控非对称缸系统的不对称性和非线性,为了提高系统控制精度,分析了该系统的工作特性,提出了基于小脑模型神经网络(CMAC)的控制策略,设计了CMAC复合控制器;为验证CMAC复合控制器的有效性,进行了实验研究,并与普通的PID控制器进行比较。
3.
In order to solve the nonlinearity and the surplus torque disturbance in the rudder load simulator of the unmanned aerial vehicles,a hybrid controller was proposed with the cerebellar model articulation controller(CMAC) network and the traditional proportional-derivative(PD) controller.
为解决无人机舵面负载模拟系统中非线性和多余力矩扰动问题,利用小脑模型神经网络非线性逼近能力强、结构简单、适于实时控制等特点,采用小脑模型和传统PD(Proportional-Derivative)控制结合的复合控制策略,由小脑模型实现前馈控制,PD控制实现反馈控制,以保证在系统运行各阶段的控制精度。
补充资料:脑神经
脑神经
cranial nerves
即"颅神经"。与脑部连接的周围神经,共12对。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条