1) fuzzy-valued vector function
模糊值向量函数
2) fuzzy basis function vector
模糊基函数向量
1.
In this paper, a novel adaptive control approach based on fuzzy basis function vector is presented for Multi input and Multi output(MIMO) nonlinear systems.
针对多输入-多输出(MIMO)非线性系统基于模糊基函数向量提出了一种新的自适应控制方法。
3) fuzzy-valued function
模糊值函数
1.
Integral and requirement of fuzzy-valued function;
模糊值函数的积分及可积条件
2.
Convergence and continuity of fuzzy-valued functions;
模糊值函数的收敛性及连续性
3.
Linear representation of fuzzy number and fuzzy-valued function using fuzzy structured element;
模糊数与模糊值函数的结构元线性表示
4) Fuzzy Random Variable-valued Convex Function
模糊随机变量值凸函数
1.
On the Properties and Judgement of Fuzzy Random Variable-valued Convex Functions;
模糊随机变量值凸函数的性质及判定
5) fuzzy-valued functions
模糊数值函数
1.
The Differentiability of Primitives for the Fuzzy-Valued Functions;
模糊数值函数积分原函数的可导性问题
6) series of fuzzy valued functions
模糊值函数级数
1.
The absolute uniform convergence for the series of fuzzy valued functions;
模糊值函数级数的绝对一致收敛性
补充资料:特征值和特征向量
特征值和特征向量 characteristic value and characteristic vector 数学概念。若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩 :σ(x)=aζ ,则称x是σ的属于a的特征向量 ,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。若A是n阶方阵,I是n阶单位矩阵,则称xI-A为A的特征方阵,xI-A的行列式 |xI-A|展开为x的n次多项式 fA(x)=xn-(a11+…+ann)xn-1+…+(-1)n|A|,称为A的特征多项式,它的根称为A的特征值。若λ0是A的一个特征值,则以λ0I-A为系数方阵的齐次方程组的非零解x称为A的属于λ的特征向量:Ax=λ0x。L.欧拉在化三元二次型到主轴的著作里隐含出现了特征方程概念,J.L.拉格朗日为处理六大行星运动的微分方程组首先明确给出特征方程概念。特征方程也称永年方程,特征值也称本征值、固有值。固有值问题在物理学许多部门是重要问题。线性变换或矩阵的对角化、二次型化到主轴都归为求特征值特征向量问题。每个实对称方阵的特征根均为实数。A.凯莱于19世纪中期通过对三阶方阵验证,宣告凯莱-哈密顿定理成立,即每个方阵A满足它的特征方程,fA(A)=An-(a11+…+ann)An-1+…+(-1)n|A|I=0。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条