1) many-knot spline
多结点样条
1.
Based on Kirov’s Theorem,applying many-knot spline functions,one kind of curve or surface modeling method with tangent vectors or normal vectors,by which some local shapes of curves or surfaces can be controlled,has been introduced.
基于Kirov定理,利用多结点样条函数,研究一类带有可控参数的曲线曲面造型方法。
2.
Some adjustable parameters are added to the general many-knot spline, a new kind of interpolating curve is constructed.
在普通的多结点样条中加入相当于导数条件的可控参数,通过调节这些参数控制插值曲线在各型值点的切向量,从而达到满意的曲线造型效果。
3.
A class of many-knot spline interpolation and B-spline fitting under the condition of tangent vectors is studied.
基于Kirov逼近定理,建立一种新的数据拟合方法,研究一类带有附加导数条件的多结点样条插值和B样条拟合。
2) many knot spline
多结点样条
1.
Further study on many knot spline system is conducted, and a new class of many knot spline function with a parameter is constructed, which preserves the advantages of the original many knot spline functions.
对多结点样条函数作了进一步的研究 ,构造了带参数的多结点样条基本函数 ,其保持了普通多结点样条函数的优越性 。
2.
Many knot spline interpolating curves (MSIC) are a kind of spline curves that precisely pass through every interpolating point on the curves, many knot spline interpolating surfaces (MSIS) also pass through every interpolating point on the surfaces.
鉴于多结点样条曲线 (MSIC)是一种点点通过的插值样条曲线 ,因此在对多结点样条插值曲线研究的基础上 ,给出了有理多结点样条插值曲线和有理多结点样条插值曲面的定义 ,并讨论了有理多结点样条的性质 ,对有理多结点样条曲线和有理多结点样条曲面的光滑拼接问题进行了讨论 。
3) many-knot splines
多结点样条
1.
The one-dimensional many-knot splines interpolation algorithm is extended to that of two dimensions, which is applied .
为了获得质量更好的插值图像,提出了一种新的C2连续的支撑区间为(-2,2)的三次多结点样条插值核函数。
2.
The one-dimensional many-knot splines interpolation algorithm is extended to that of two dimensions,which is applied to image processing.
为了获得质量更好的插值图像,提出了用具有紧支集的多结点样条基函数来进行图像插值的新技术,并首先将1维的多结点样条插值算法推广到2维,建立了用于图像数据的插值公式;然后分析了多结点样条插值方法的逼近精度、正则性、插值核函数的频域特性。
4) many-knot spline interpolation
多结点样条插值
5) Rational many knot spline
有理多结点样条
6) Cubic many-knot splines
三次多结点样条
补充资料:银结条冠子
【诗文】:
日下征良匠,宫中赠阿娇。
瑞莲开二孕,琼缕织千条。
蝉翼轻轻结,花纹细细挑。
舞时红袖举,纤影透龙绡。
【注释】:
【出处】:
全唐诗:卷708-20
日下征良匠,宫中赠阿娇。
瑞莲开二孕,琼缕织千条。
蝉翼轻轻结,花纹细细挑。
舞时红袖举,纤影透龙绡。
【注释】:
【出处】:
全唐诗:卷708-20
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条