1) many-knot spline function
多节点样条技术
2) Spline Node
样条节点
3) node technology
节点技术
1.
Application of node technology to mechanical CAD;
机械CAD中节点技术的应用
4) many-knot spline
多结点样条
1.
Based on Kirov’s Theorem,applying many-knot spline functions,one kind of curve or surface modeling method with tangent vectors or normal vectors,by which some local shapes of curves or surfaces can be controlled,has been introduced.
基于Kirov定理,利用多结点样条函数,研究一类带有可控参数的曲线曲面造型方法。
2.
Some adjustable parameters are added to the general many-knot spline, a new kind of interpolating curve is constructed.
在普通的多结点样条中加入相当于导数条件的可控参数,通过调节这些参数控制插值曲线在各型值点的切向量,从而达到满意的曲线造型效果。
3.
A class of many-knot spline interpolation and B-spline fitting under the condition of tangent vectors is studied.
基于Kirov逼近定理,建立一种新的数据拟合方法,研究一类带有附加导数条件的多结点样条插值和B样条拟合。
5) many knot spline
多结点样条
1.
Further study on many knot spline system is conducted, and a new class of many knot spline function with a parameter is constructed, which preserves the advantages of the original many knot spline functions.
对多结点样条函数作了进一步的研究 ,构造了带参数的多结点样条基本函数 ,其保持了普通多结点样条函数的优越性 。
2.
Many knot spline interpolating curves (MSIC) are a kind of spline curves that precisely pass through every interpolating point on the curves, many knot spline interpolating surfaces (MSIS) also pass through every interpolating point on the surfaces.
鉴于多结点样条曲线 (MSIC)是一种点点通过的插值样条曲线 ,因此在对多结点样条插值曲线研究的基础上 ,给出了有理多结点样条插值曲线和有理多结点样条插值曲面的定义 ,并讨论了有理多结点样条的性质 ,对有理多结点样条曲线和有理多结点样条曲面的光滑拼接问题进行了讨论 。
6) many-knot splines
多结点样条
1.
The one-dimensional many-knot splines interpolation algorithm is extended to that of two dimensions, which is applied .
为了获得质量更好的插值图像,提出了一种新的C2连续的支撑区间为(-2,2)的三次多结点样条插值核函数。
2.
The one-dimensional many-knot splines interpolation algorithm is extended to that of two dimensions,which is applied to image processing.
为了获得质量更好的插值图像,提出了用具有紧支集的多结点样条基函数来进行图像插值的新技术,并首先将1维的多结点样条插值算法推广到2维,建立了用于图像数据的插值公式;然后分析了多结点样条插值方法的逼近精度、正则性、插值核函数的频域特性。
补充资料:B样条曲面
B样条曲面
B-spline surface
B yangtiao qumianB样条曲面(Bsp一ine surface)用分段B样条多项式函数及控制点网格定义的面。基于B样条曲线,可以得到B样条曲面的表示式。给定(m+1)(n十l)个空间点列凡(i=0,1,…,m,]=0,1,…,n),则s(二,w)一艺艺尸。从,*(。)凡,,(w),该二0少=O u,功任[0,1」定义了kXz次B样条曲面。式中从,*(u)和凡,,(w)分别是k次和l次的B样条基函数,由凡组成 的空间网格称为B样条曲面的控制点网格。上式 也可写成如下的矩阵式称(u,二)二认呱几M王w王,y任[l,。+2一划 z任[l,n+2一z〕,u,wC〔O,1」式中y,z—表示在u,w参数方向上曲面片的 个数。 Uk=[。‘一‘,uk一2,…,u,1〕, 钱二仁砂一’,砂一2,…,w,1〕, 凡,二氏,i任[y一1,y+k一2〕, ,任仁z一1,z+z一2] 凡是某一个B样条面片的控制点编号。最常用的 是二、三次均匀B样条曲面的构造。 (1)均匀双二次B样条曲面 已知曲面的控制点巧(i,]=o,1,2),参数u、 二,且O镇u,w簇1,k=l=2,构造步骤是: ①沿w(或u)向构造均匀二次B样条曲线,即 有 ,「‘一“P0(w,一L矿“」[一::侃同哪 WMs经转置后尸。(w)=「尸oo尸。,尸。2〕磷wT;同上可得P,(二)=[尸,。尸,,尸,2」M五WT pZ(二)=[pZ。p21 p22]M百wT ②再沿u(或w)向构造均匀二次B样条曲线,即可得到均匀双二次B样条曲面。 ,L 11﹁.!一|到泊恤、、/)pp(w嘿的嘿编s(u,w)二UM日(w T W TB M翻川州护P PP=UM白 匕PZo P21简记为s(u,二)二〔侧砂呵百wl (2)均匀双三次B样条曲面 已知曲面的控制点八(£,j=o,1,2,3),参数u,二且“,w任【0,1],构造双三次B样条曲面的步骤同上述,其矩阵形式是 S(u,w)=L时正声吸至百wT, 门几创川川旧洲翻叼--302 1222犯尸尸尸P尸尸尸尸尸冲尸峥 一一 P月J月j 3一6,l八、︶n”4.内J,1卜|匡IL 1一6 一一 姚双三次B样条曲面如图1所示。图1双三次B样条曲面
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条