说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 集值优化问题
1)  set-valued optimization problem
集值优化问题
1.
Under the nearly cone-subconvexlike set-valued maps,relations of strong efficient solutions and Kuhn-Tucker saddle point of set-valued optimization problem are dicussed.
首先在局部凸Hausdorff拓扑向量空间中定义了集值优化问题的Kuhn-Tucker鞍点,在近似锥-次类凸集值映射下,讨论了集值优化问题的强有效解与Kuhn-Tucker鞍点之间的关系。
2.
It is well known that e?cient solution of set-valued optimization problem is so-lution in the sense of non-inferiority with respect to partial order.
集值优化问题的最优性条件与解集的结构理论在集值优化理论中占有重要的地位。
3.
At last, we study and depict optimal conditions of set-valued optimization problems.
本文在没有拓扑结构的实线性空间中引进了一类新的广义凸集、广义类凸集值映射等概念,并利用该广义凸性,将经典凸分析的一些结果作了一定的推广,并研究了该广义凸性条件下集合的一些性质及其择一定理的形式等,最后讨论了集值优化问题的最优性条件。
2)  set-valued optimization problems
集值优化问题
1.
Applying the theorem,the optimality necessary conditions and sufficient conditions for the weak efficient solutions to the set-valued optimization problems with generalized inequality constraints are obtained in ordered linear spaces.
利用此定理,在序线性空间中获得了带广义不等式约束的集值优化问题弱有效解的最优性必要条件和充分条件。
3)  vector optimization problems of set valued mapping
集值映射向量优化问题
1.
In this paper,we conside the properties of weak effective solution of vector optimization problems of set valued mapping.
研究了集值映射向量优化问题弱有效解的一些性质,引进了集值映射向量优化问题弱有效解的定义,并证明了集值映射向量优化问题弱有效解的几个连续性质以及具有某些性质的集值映射组成的空间是完备的。
4)  numerical optimization problems
数值优化问题
1.
This paper proposes a novel genetic algorithm for numerical optimization problems with continuous variables,in which a hybrid crossover operator is designed to improve the fitness of individuals by means of combining traditional crossover operators with a new optimization technique,as well as a modified fitness function.
文章将传统遗传算法中的杂交算子与一种新设计的优化方法相结合,提出了一种能改善种群中个体适应度的混合杂交算子,并通过修正适应度函数给出了一种新的求解连续型数值优化问题的遗传算法,并证明了其全局收敛性。
5)  Eigenvalue optimization
特征值优化问题
6)  non-numerical problem
非数值优化问题
1.
But the all-purpose algorithm of MEC for non-numerical problems doesn’t exist.
思维进化计算已成功应用于求解数值优化问题,对TSP、常微分方程组建模和Job-shop调度问题等非数值优化问题也做了一定的研究,但目前思维进化计算尚未有关于非数值优化问题的通用算法框架。
补充资料:微分边值问题的差分边值问题逼近


微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems

  微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的1,则无论取什么范数都无收敛性.如果;簇1,且范数为 !lu‘}!,=suo}“几}.则问题(2)是稳定的,因而有收敛性(见[2],[3]): 11[uL一价l,认=O(内). 差分问题代替微分问题是用计算机近似求解微分边值问题的最通用的方法之一(见【7]). 微分问题用其差分的近似代替开始于!l],【2]和[41等著作.这一方法有时还用来证明微分问题解的存在,按下述方案进行,先证明微分边值问题的差分近似的解。*的集合对h是紧的,然后即可证明某一子序列u‘在h*~0时的极限是微分问题的解认如果该解已知是唯一的,则不仅子序列,而且整个u。集在h~0时都收敛到解u.【补注】补充的参考文献见微分算子的差分算子通近(aPpoximation of a di亚rential operator by diffe-ren沈operators)的参考文献.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条