说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Lagrange乘子神经网络
1)  Lagrange programming neural network
Lagrange乘子神经网络
2)  Lagrange neural network
Lagrange神经网络
1.
Stability analysis of Lagrange neural networks;
Lagrange神经网络的稳定性分析
3)  sub neural network
子神经网络
4)  partial least squares regression and neural network
偏最小二乘神经网络
1.
This paper proposes a partial least squares regression and neural network model(PLSNN) to solve the problem.
针对致密储层中气水干层识别和产能预测准确率较低这一难题,提出偏最小二乘神经网络方法:用偏最小二乘方法对输入自变量集进行主成分提取预处理,消除重叠的输入信息,用可变学习速率反向传播算法(VLBP)和附加动量方法(AMOBP)构建BP储层识别和产能预测的网络模型。
5)  NNPLS
神经网络偏最小二乘法
1.
Compared with PLS and NN,the NNPLS method can achieve higher imitating precision and smaller prediction errors.
分析了顾客满意度测评模型中各变量间存在的非线性关系,将神经网络偏最小二乘法(NNPLS)应用到顾客满意度测评中。
2.
NNPLS is used to establish a number of non-linear model in different operating conditions and the whole non-linear system.
该方法基于有源自回归(Auto-Re-gressive with extra inputs,ARX)模型与模糊C-均值(Fuzzy C-Means,FCM)聚类方法识别操作工况,在不同操作工况分别采用神经网络偏最小二乘法NNPLS(Neural Net Partial Least Square),建立多个非线性子模型拟和系统全局非线性。
6)  AMFNN
加乘模糊神经网络
1.
In this paper, an effective method of data prediction based on wavelet MRA (Multiple Resolution Analysis) and AMFNN (Additive-Multiplicative Fuzzy Neural Network) is proposed to precisely research the changing traffic-flow in urban roads.
为了研究城市道路动态变化的交通流量,本文提出了在多分辨率分析(MRA)的基础上利用加乘模糊神经网络(AMFNN)进行预测的方法,并给出了交通流量的预测模型,同时,用实测的流量数据测试了模型的性能。
补充资料:Hopfield神经网络模型


Hopfield神经网络模型
Hopfield neural network model

  收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条