1) nonparametric dual response surface methodology
非参数双响应曲面法
1.
Current researches on nonparametric dual response surface methodology (NPDRSM) focus on impro- ving fitting performance,but lose sight of improving generalization performance of models.
现有非参数双响应曲面法只注重提高模型的拟合性能而忽视提高泛化性能,对于复杂工业过程的质量优化和稳健设计应用效果不佳。
2) NPRSM
非参数响应曲面方法
1.
Nonparametric response surface methodology (NPRSM) is a goo.
非参数响应曲面方法是一个好的选择,它能够应付足够复杂的情况,并得到了广泛应用。
3) double response surface method
双响应曲面方法
1.
Based on the analysis and comparison of these two methods,the paper presents a double response surface method to combine RSM and Taguchi Methods in order to make use of the advantages of RSM and Taguchi Methods.
本文在对两种方法的优缺点分析比较的基础上 ,提出了运用双响应曲面方法将 RSM和田口方法结合起来 ,实现优势互补 ,以期能更有效地改进产品 /过程质量。
4) orthogonal and rotatable design
双曲面响应法
1.
This paper intend to increase the effciency of the prediction of the Response Surface by applying orthogonal and rotatable design in Dural Respones Surface Methodology.
本文通过正交旋转设计和计算机模拟噪声因子变化来提高双曲面响应法的精度并对两种方法应用结果进行比较 ,说明田口参数设计仍具有实践和方法论的启发意
5) dual response surface
双响应曲面
1.
This paper analyzes and summarizes the methods for multiresponse optimization,and the theories and applications of the methods based on Mahalanobis distance,multivariate loss function,desirability function,proportion of conformance and dual response surface are addressed.
本文对目前几种多响应优化的主要方法进行了分析和总结,考察了马氏距离法、多元损失函数法、满意度函数法、概率法以及双响应曲面等几种主要方法在多响应优化中的应用,并对实例的多响应的预测值和方差进行了优化,比较了这几种方法的优缺点。
6) dual response surface methodology
双重响应曲面方法
1.
In this paper, we point out some limitation of dual response surface methodology, and introduce the application of response model methodology in product parameter design improvement with its advantage.
本文指出双重响应曲面方法的一些局限性,介绍了响应建模法在参数设计中的应用及其优点,也指出了响应建模法与双重响应曲面方法的联系。
补充资料:单侧曲面与双侧曲面
单侧曲面与双侧曲面
one - sided and two - sided surfaces
单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条