1) compact support
紧支集
1.
Construct n-order differentiable function with compact support in set of real numbers;
在实数集上构造具有紧支集的n阶可导函数
2.
this paper investigates the uniquenes S Of solutions with compact support of a boundary value problem which comes from t He study of asymptotic behavior of blow up solution of the degenerate parabolic System.
证明了具紧支集解的唯一
3.
The Reisz lemma is used to construct a group of orthogonal basis of compact supported wavelets,and the article gives the processes of the construction of orthogonal basis of compact supported wavelets.
应用Riesz引理构造一组紧支集上的正交小波基,并且给出了构造紧支集正交小波基的过程。
2) compactly supported
紧支集
1.
We constructed bivariate non-tensor compactly supported prewavelet with symmetrical property, and discussed why our constructed prewavelets are adapted to image edge detection, and put forward an effective edge detection algorithm of non-tensor wavelets according to the feature of our constructed non-tensor wavelets, in which the key is how to distinguish the noise from the image edge information.
构造了二元非张量积紧支集对称的连续预小波,分析了所构造的紧支集、对称的、非张量积预小波适合于图像边缘检测的原因,针对所构造的非张量积小波的特点,提出了有效的边缘检测算法,其中噪音与边缘信息的区分非常重要。
3) non-compact support
非紧支集
4) wavelet compact support set
小波紧支集
5) strict support orthogonal wavelet
紧支集正交小波
1.
Based on the Mallat algorithm of discrete wavelet transform, the decomposition of acceleration process of ground motion due to earthquake is obtained by strict support orthogonal wavelets db6.
基于离散正交小波变换的快速Mallat算法,用紧支集正交小波db6对地震动加速度时程进行了分解,随后将该分解结果用于求解多自由度弹性体系的地震反应。
6) orthogonal compact support wavelet
正交紧支集小波
1.
The relationships between extension of finite length signals and the number of the output data from an orthogonal compact support wavelet filter bank are studied.
研究了有限长信号通过正交紧支集小波滤波器组时 ,信号的延拓与滤波器组输出数据个数的关系 ,给出了在滤波器组中滤波器长度不同的条件下 ,有限长信号的延拓方法及可完全重构的范围 ,证明了滤波器组输出数据的个数等于输入信号长度的条件 。
补充资料:紧支集函数
紧支集函数
function of compact support
紧支集函数汤曰为阅ofaJ叨声Ct,即毗;中。.THa,巾yuK明。,] 定义在E”的某个区域上的、具有属于这个区域的紧支集的函数.更确切地说,假定函数f(x)‘f(x,,…,x。)定义在区域。CE”上,f的求年(s叩port)是指使f(x)不为O(f(x)护0)的点x6Q的集合的闭包.于是,Q中紧支集的函数是定义在0上的函数.其支集A是O中有界闭集,A和Q的边界r有正距离占>O,其中咨充分小. 通常考虑k次连续可微的紧支集函数,其中k是给定的自然数.甚至更经常地考虑无穷次可微的紧支集函数.函数 ‘。一,‘、:,’一,,,一二一
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条