说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 点光源映射
1)  spot lamp-house
点光源映射
1.
In nanoimprint lithography,to reduce the error of parallelism between the template and the substrate,and adjust the relative error between the grating marks for precise alignment to half of the grating distance,a mathematic model for spot lamp-house mapping is established to identify the image of the template projection.
在纳米压印光刻中,为了减小模具与晶片的平行度误差,将精对正光栅标记的相对误差校正到半栅距范围之内,并建立了点光源映射的数学模型,对模具空间位姿的投影进行图像识别。
2)  resource mapping
资源映射
1.
Auction is introduced into in grid resource mapping.
提出基于多物品拍卖的资源映射算法。
2.
The design and simulation of resource mapping algorithms in grid environment is a difficult undertaking, mainly due to resource heterogeneity, geographic distribution, autonomy and the requirements of the QoS of tasks.
由于网格底层资源的异构、广域分布、自治等特性和网格高层的服务质量 (QoS)要求,使得网格资源映射算法的设计和模拟具有相当的难度。
3.
A unified resource mapping strategy in computational grid environments is presented, which considers the input data repositories and QoS of tasks to mapping a set of independent tasks (meta-task) to resources.
提出了计算网格环境下一组相互独立的计算任务(meta-task)的资源映射策略。
3)  interolog
同源映射
1.
[Methods] We used bioinformatics methods including five computational methods(phylogenetic profile,gene neighbor method,operon method,gene fusion method,interolog) to predict the protein interaction network of Staphylococcus aureus.
【方法】采用系统发生谱、操纵子法、基因融合法、基因邻近法、同源映射法等5种计算方法预测金黄色葡萄球菌蛋白质相互作用网络。
4)  node mapping
节点映射
5)  mapping point
映射点
6)  point to set map
点集映射
1.
Two models for solving bilevel multiobjective optimization problems are established by using the concept of point to set maps.
借助于点集映射的概念建立了两个两层多目标优化问题的数学模型,较深入地讨论了两种模型在锥意义下的凸性,获得了使两个模型锥凸性成立的充分条
补充资料:可微映射的奇点


可微映射的奇点
singularities of differentiable mappings

(V:二X.(V,二X fV.=X,. ty:二xZ;之y:=x孟;走y:=x盆+x 1 xZ(典型性的判别法见【3]与【4」).H.认知tney的工作(1955),其中证明了这个定理,被认为是可微映射的奇点理论的开始,虽然更早一些就己有了许多个别的结果(函数临界点的Mon祀理论(Mo瞬tb由ry),关于嵌入的奇点的M小itney定理,Jl.C.rlo砚p,,关于奇点和示性类的关系的工作). 可微映射奇点理论的基本概念. 可微映射的芽(罗nn ofdi派此ntiable叮以PPJI咨).令X和Y为光滑流形,P‘X,q‘Y.(以下“光滑”一词用作无穷可微的同义语.)在点p的某一邻域内重合的映射X~Y成一等价类,称为在P点的芽(罗nn at the pointP);映p为q的映射芽的集合记作C田(X,Y)p。·X中保持p不变的光滑的变量变换之芽的群记作Diff‘(X),. 可微映射的奇点理论的一个重要的局部问题是研究群D湃国(X),x Diff。(Y);在c的(X,Y)p,上的自然作用这个问题和许多类似问题的解决通常首先是将函数空间和作用于其上的无穷维群用有限维流形和作用于其上的L记群来逼近.再把这样得到的结果转移到原来的无穷维情况上去. 节丛(jet bund】e).令f,g:X~Y为光滑映射且.f(p)一g(p)二不如果映射f和g在P点的介咖r级数(肠咖r sen留)直到k次项都相同,就定义它们在夕点有k阶切触(contact ofo找七rk).在夕点k阶接触的映射成一等价类称为一个k节(k一et).所有映p为q的映射之k节的集合有自然的光滑流形的结构,并记作尹(X,Y)P,,.有一个适当定义的自然的投射 C田(X,Y),,。~J‘(X,Y)p;· X的保持p点不变且在此点具有k阶接触的光滑变量变换的等价类称为P点处的可逆北节(加说州b】ek一jet).可逆k节成一Lie群口(X),.Lie群扩(X),xL帐(Y),作用在J介(X,Y),,,上而且逼近Dr(X),xD汀的(Y);在C的(X,Y),,;上的作用.令尹(X,Y)={Jk(X,Y),.,对一切(夕,、)eXxY的不相交并}.集合Jk(X,y)有X xy上的光滑丛的自然结构,而其纤维为 J‘(R。,R·)。。=Jk(川,n),结构群则是 L“(R’)。火Lk(R”)。二Lk(爪,n),其中m二山mX,n“dirny.李李和奇卓的刹sing川aritirs and chasesof,ingu-k此j件).乙人(。,n)在Jk(。,儿)上作用的轨道称为一个人步宁(k一s山gu上trity);J人(m,n)在L古(。,n) 之作用下不变的任一子集称为一个丸奇点的类(c1踢ofk一sjll四」adti岛).令S为这样一个类因为尹(。,。)可以与尹(X,Y),、,相等同,就可以在尹(X,y),,、守中定义子集S(X,y),;而不问等同的方法如何·集合S(X,Y)二{S(X,Y沁,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条