1) hybrid-drive system
混合驱动系统
2) Mild hybrid vehicle drive system
中度混合动力驱动系统
3) hybrid driving system
混合动力驱动系统
1.
In this paper, an analyfical model of the parallel_series hybrid driving system is presented.
对一种混联式混合动力驱动系统建立了相应的分析模型 ,并结合 6 6 0 0型中巴车对该驱动系统和整车的性能进行了理论分析 ;简要论述了该系统的工作机制和控制策略 。
4) hybrid drive
混合驱动
1.
Study on track characteristics of hybrid driven cam connecting rod mechanism;
混合驱动凸轮连杆机构的轨迹特性研究
2.
The forward kinematics problem of 6-DOF hybrid driven parallel mechanism was researched,and the kinematics mathematical model was built by using the method of combining the geometrical analysis with virtual bar s length based on the geometrical structural characteristics of 6-DOF hybrid driven parallel mechanism.
对一种六自由度混合驱动并联机构的位置正解问题进行了研究,根据该六自由度并联机构的几何结构特点,运用几何分析和虚拟杆长相结合的方法建立了其运动学数学模型,用遗传算法求出了其位置正解,并基于位置正解对该类并联机构存在的实际装配构型进行了分析,给出了计算实例。
3.
Dynamic load made by variable velocity for center of mass of the components of hybrid drive linkage mechanism are balanced and avoided difficultly.
在混合驱动连杆机构中,构件的质心大都作变速运动,产生的动载荷难以完全平衡和消除,不但辅助电机所需的驱动功率偏大,对辅助运动电机的控制不利,而且也影响系统的动态性能。
5) hybrid driven
混合驱动
1.
Optimization design for dynamics of the 2-DOF hybrid driven parallel mechanism;
混合驱动二自由度并联机构的动力学优化设计
2.
The forward kinematics problem, the workplace problem, the accuracy design and accuracy compensation problem, the motion simulation of the solid model and the mechanism bar's interference analysis problem on the 6-DOF hybrid driven parallel mechanism with the five-bar closed-chain have been thorough studied.
本文对含五杆闭链的并联机构构型综合问题,—种含五杆闭链的混合驱动六自由度并联机构的正运动学位置求解、工作空间分析、精度设计、实体模型运动仿真及机构杆件干涉分析等问题进行了比较深入的研究。
3.
This paper presents the trajectory planning of five-bar hybrid driven mechanism based on inverse kinematic theory and spline interpolation function,analyses the effect of rotational speed of real time non-adjustable motor on the acceleration of the manipulator end point and real time adjustable motor,and then derives the mathematic relationship between them.
运用逆运动学原理和样条函数给出了混合驱动五杆机构的轨迹规划方法,并讨论了常速电机的转速末端执行器和伺服电机加速度的影响,得出了他们之间的数学关系式。
6) composite driving
混合驱动
1.
A method to design the half-bridge switching power based on the bootstrap circuit and transformer composite driving mode is presented.
提出了一种基于自举电路和变压器混合驱动模式的半桥式开关电源的设计方法,这种电源采用通用的PWM发生器芯片,下部场效应管开关直接驱动,上部场效应管开关利用自举电路和变压器混合驱动方式驱动。
补充资料:混合孔型系统
混合孔型系统
mixed pass sequence
的。有时仅在前面用一组箱形孔型,其目的是脱除钢坯或钢锭表面上的氧化铁皮,然后在菱一菱孔型中轧出后面机架所需的轧件。这种孔型系统适用于轧制品种规格较多、批量不大的合金钢,并且是用人工操作的。现有陈旧的合金钢厂,有时还用这种孔型系统作为延伸孔型,但它不适于生产成品。 箱形一六角一方混合孔型系统这种孔型系统是由一组以上箱形孔型和一组以上六角一方孔型系统组成,主要用于开坯机上。这种混合孔型系统所用的道次数可以比箱形一菱一菱混合孔型系统少,而且也有一定的共用性。 箱形一六角一方一椭圆一方混合孔型系统这种孔型系统主要用于小型和线材轧机上。轧件经箱形孔型轧到一定断面尺寸之后,改用六角一方孔型;用六角一方孔型将轧件轧到一定的断面尺寸以后,再改用椭圆一方孔型。这种孔型系统的轧制稳定性好,共用性也较大。 箱形一六角一立菱一方一椭圆一方混合孔型系统 这种混合孔型系统(图”多用于小型横列式轧机上,由于翻钢次数减少,简化了操作,便于机械化,也可使用双层辊道。因为有扁六角孔型,延伸系数可增大至2。从而减少轧制道次,轧制也较为稳定。设计这种混合孔型系统时应考虑到箱形、六角形和立菱形孔型的特点。 (l)箱形孔型设计。在图2所示的箱形孔型之前,可以仍为箱形孔型,也可以用方坯直接进入这一箱形孔型。若进入此箱形孔型的轧件宽度为B。,则此箱形孔型中的轧件尺寸和孔型的尺寸可按一般的箱形孔型系统设计方法确定。 (2)六角形孔型设计。在设计六角形孔型时,既要考虑箱形孔型轧出的轧件尺寸,也要考虑出六角形孔型的轧件在后两个孔型中的总宽展童。六角形孔型的高度h:与方孔型构成宽度Bk4之比值为从/Bk‘~0.45一0.64,此比值愈小,延伸系数愈大。实际使用的轧件在六角形孔型中的延伸系数产1~1.51一1.73;轧件从六角形孔型到后方孔型中的总延伸系数产:~FZ/aZ<60。较好;同时要求六角孔型中的充满程度良好,F4一1.50一1.93。为保证轧件在立菱孔型中轧制稳定,否则轧件进入立菱孔型将不稳定。要求六角形孔型上下轧糟侧壁夹角aZ<。3,实践表明 }一幸王叁守食毋 图2箱形一六角一立菱一方孔型尺寸的确定 槽底宽度瓦:~久1+(5一8) mm角部就可以避免龟裂,所以这一混合孔型系统对于轧 槽口宽度凡:一B。十助1+助2+(2一5) mm制某些合金钢是比较好的。式中的助:为轧件在箱形孔型中的宽展量,助1~从1月工,夕,二0.3~0.4;助:为轧件在六角形孔型中的宽展量,助2~从2刀:,刀2一。.6一0.8。六角形孔型的棍缝不宜过大,以使孔型充满良好,否则轧件进人立菱孔型时将不稳定。 (3)立菱孔型设计。设计立菱孔型时,考虑到(B。+助1+助2)一从3一以4一h4,一般应使从3>从、;立菱孔顶角a3一62。一660,甚至还可更小,如有的厂采用a3=40016‘。bk3=b、一(4一7)mm。对于立菱孔型要求两侧不充满,使轧件两侧近于平直,断面形状保持六角形。若立菱孔型充满时,轧件两侧呈凸形表面,会导致方孔型入口夹板夹持轧件的作用减弱或失去夹持作用。 按上述方法设计好孔型后,应按轧件在各孔型中的实际压下量验算轧件在各孔型中的宽展量和轧件宽度,必要时还应校核咬入条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条