1) modified F-expansion mothed
修正的F-展开法
2) modified F-expansion method
改进的F-展开法
1.
In this paper,we solve some fifth-order nonlinear evolution equations by using modified F-expansion method,and obtain abundant new exact solutions.
应用改进的F-展开法求解一类五阶非线性发展方程,获得了该方程的大量新的精确解。
2.
By using a modified F-expansion method,rich families of exact solutions of DGH equation with strong dispersive term have been obtained,including soliton-like solutions,trigonometric function solutions and rational solutions.
利用改进的F-展开法,求出了一类带强色散项DGH方程的一系列类孤子解,三角函数周期解和有理数解,方程结合了KdV方程的线性色散项和C-H方程的非线性色散项。
3.
In this paper, the major contents conclude: under Homogeneous balance idea, a modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of nonlinear PDEs.
本文研究的主要内容:在齐次平衡原则的思想下,充分利用F-展开法和Riccati方程在非线性偏微分方程(PDES)求解中的优良特性,提出一种改进的F-展开法。
3) F-expansion method
F展开法
1.
Solving KdV equation with variable coefficients by using F-expansion method;
用F展开法解变系数KdV方程
2.
The extended F-expansion method and new exact solutions of the generalized KdV equation
修正的F展开法和推广的KdV方程新的孤波解和精确解
3.
The F-expansion method which can be used to solve nonlinear equations has been summarized.
对求解非线性方程的F展开法进行了综述,揭示了方法的内在本质,指出了F展开法可能的发展方向,并结合F展开法的最新进展,给出了一个辅助常微分方程,借助它可求解具有高次非线性项的非线性偏微分方程。
4) F-expansion
F-展开法
1.
By using Mathematica and the F-expansion method recently proposed on the base of analogic method,homogeneous balance method and Jacobi method,the double periodic wave solutions expressed by Jacobi elliptic functions for the(n+1)-dimensional Sinh-Gordon equation .
然后由行波约化将其常微分方程化,在拟设法、齐次平衡法和Jacobi椭圆函数法的基础上,借助Mathematica软件和新近提出的F-展开法,求出并研究了(n+1)维SG方程的Jacobi椭圆函数表示的双周期波解,分析了解的结构,在极限情况下这些解退化为相应的孤立波解、三角函数解和奇异行波解。
2.
By applying F-expansion this paper obtains a number of new periodic wave solutions expressed by various Jacobi elliptic functions of the dispersive long wave equations in 2+1 dimensions.
利用F-展开法,求出了非线性耦合Klein-Gordon方程组的许多新的由Jacobi椭圆函数表示的周期波解。
3.
By applying F-expansion we obtain a number of new periodic wave solutions expressed by various Jacobi elliptic functions of the dispersive long wave equations in 2+1 dimensions.
利用F-展开法,求出了(2+1)维扩散长波方程组的许多新的由Jacobi椭圆函数表示的周期波解。
5) F-expantion method
F-展开法
1.
In the paper,according to homogeneous balance principle and F-expantion method,some double-periodic exact solutions of a fifth-order KdV-like equation with variable coefficients are obtained in form of Jacobi elliptic function.
利用齐次平衡原则和F-展开法,求出了一个五阶变系数KdV-like方程的一些用Jacobi椭圆函数表示的双周期解。
2.
In the paper,according to homogeneous balance principle and F-expantion method,some double-periodic wave exact solutions of a fifth-order KdV-like equation is obtained,in the form of Jacobi elliptic function.
根据齐次平衡原则和F-展开法,求出了五阶KdV-like方程一些用Jacobi椭圆函数表示的双周期解。
3.
In the paper,we mainly use homogeneous balance principle and F-expantion method to obtain some exact solutions of a nonlinear Pochhammer-chree equation.
根据齐次平衡原则和F-展开法,求出了非线性Pochhammer-Chree方程一些用Jacobi椭圆函数表示的双周期解。
6) F-expansion method
F-展开法
1.
Solving Variant Boussinesq equations by using F-expansion method;
用F-展开法解Variant Boussinesq方程组
2.
In this paper,the F-expansion method is used to solve the coupled Schrodinger and KdV equations with computerized symbolic computation.
借助于计算机符号计算技术,利用F-展开法求得耦合Schrodinger-KdV方程的精确解,其中包括三角函数解、双曲函数解和椭圆函数解,其精确解在等离子体物理中有着广泛的应用。
3.
In this paper,exact soliton solutions of Hirota-Satsuma equations are worked out by applying the F-expansion method and computer algebra software Mathematica.
该文应用F-展开法和计算机代数系统M athem atica求解了非线性发展方程H irota-Satsum a方程组,并获得了新的精确孤立波解。
补充资料:修正的AFS子宫内膜异位症分期法
修正的AFS子宫内膜异位症分期法
1985年美国生殖学会(AFS)提出修正的子宫内膜异位症的分期法,是在1979年AFS提出的分期法的基础上加以修正,此分期法较前者更为简单、明确,有利于评估疾病的严重程度,及选择治疗方案,可以评估各种治疗方法的优、劣,但此法必须经腹腔镜检查,或开腹手术确诊,并须详细观察记录异位病灶的部位,结节的数目、大小和累及的深度来进行评分,最后累计分数的多少进行分期,较为全面、客观。详见下表:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条