1) geometrical abide condition
几何不变条件
2) poor geometry
不良几何条件
3) bad geometry
不利几何条件
4) Geometrical Condition
几何条件
1.
Applying the principle of the graph theory put for-ward the method which forms thegeometrical conditions of the contrl network tomatcally and then discussed thestransformation on contr-ol network to form base-line condition.
本文分析了控制网与图的内在关系,应用图论的原理给出了自动生成控制网几何条件的方法,并讨论了生成基线条件时对控制网的拓扑变换。
2.
This paper analyzes the closure error and tolerance of the geometrical condition existing in the plane control network,and based on the production practice,introduces some methods and experiences of making the check calculation of the closure error by using EXCEL.
分析了平面控制网存在的几何条件闭合差及其限差,并根据生产实际,介绍了利用Excel进行闭合差验算的一些方法和经验。
3.
To meet the needs that obstacles would be mounted in the tube to change the geometrical conditions and that the inner wall of the tube should be made repalceable by some porous materials for changing the physical boundary conditons, a specially designed testing section .
为开展边界物理和几何条件对气相爆轰波传播影响的系统研究,需要对已有的40×40mm方截面双层爆轰激波管进行改造。
5) geometric condition
几何条件
1.
This paper elaborated geometric condition of Pareto curve which should be satisfied,generalized the graphic method for the analyzing drawing ABC, makig it normalized,and applied the Pareto curve to supervise the brick--laying quality of a certain project, finding out the main elelemts influencig the quality of the project.
本文对Pareto曲线应满足的几何条件进行了论述,总结出几点ABC分析图作图方法,使之规范化,并应用Pareto曲线对某项工程的砌砖质量进行监控,从而找出影响质量的主要因素;并对砌砖工程进行质量控制(QC)。
2.
We proved, under a geometric condition given by Capietto, Mawhin and Zanolin, the infinity and some dense distribution of even or odd symmetric subharmonics for the equation with oscillatory nonlinearity.
本文讨论了具有偶或奇对称性的Duffing方程,在由Capietto,Mawhin和Zanolin给出的几何条件下,我们证明了具有振动非线性的对称Duffing方程有无穷多个对称的次调和解,并且其次调和解具有某种稠密的分布。
6) coplanar asymmetric geometry
共面不对称几何条件
1.
The (e,2e) triple differential cross sections for He(1s2),Ar(3p6)and Ar(2p6)have been calculated using the modified distorted wave Born approximation (DWBA) in coplanar asymmetric geometry.
采用修正后的扭曲波玻恩近似(DWBA)理论,计算了共面不对称几何条件及大能量转移和小动量转移条件下的He(1s2),Ar(3p6)和Ar(2p6)(e,2e)反应三重微分截面。
补充资料:Weierstrass条件(对变分极值的)
Weierstrass条件(对变分极值的)
eierstrass conditions (for a variational extremun
与 ,(,)一丁:(:,、(:),、(。))过:, ,‘! L:R xR”xR”~R,在极值曲线x;、(t)上达到一个强局部极小值,其必要条件是不等式 、(r,x。(r),又。(r),亡))o对所有的t,t。蕊t毛t、和所有的省任C”都满足,其中‘·是Weierstrass澎函数(Weierstrass吕J一几mC-tion).这条件可借助于函数 n(t,x,p,u)=(p,u)一L(t,x,u)来表示(见n0HTp“「“H最大值原理(Pont月闷gm~-mum pnnciple)).Weierstrass条件(在极值曲线x。(t)上六)0)等价于函数n(r,x.,(t),尸。(r),u)当“=交.,(r)在u上达到极大值,其中夕。(t)=L、(t,x。,(t),又。(t)).这样,Weierstrass必要条件是floH-Tp。朋最大值原理的特殊情形. Weierstrass充分条件(Weierstrasss川币eientcon-山tion):为了泛函 叭 ,(,)一丁:(:,、(。),*(。))、。, r‘- L:R xR”xR”一,R在向量函数x.,(t)上达到一个强局部极小值,其充分条件是在曲线x。(t)的一个邻域G中存在一个向量值场斜率函数U(t,x)(测地斜率)(见H皿祀rt不变积分(Hilbert invariant integral)),使得 交。(t)=U(t,x。(t))和 产(t,x,U(t,x),七))0对所有(t,x)〔G和任何向量亡6R”成立.【补注]对在极值曲线的隅角的必要条件,亦见Wei-erstrass一Erd”.un隅角条件(W匕ierstrass一Erdrnanncomer conditions).weierstrass条件(对变分极值的)[Weierstrass cOI公i-tions(for a varia垃翻目翻drelll.ll:Be滋eP山TPaccayc-月OBH,,KcTpeMyMa」 经典变分法中对强极值的必要和(部分地)充分条件(见变分学(variational cakulus)).由K .We卜erstrass于1879年提出. 节几ierstrass必要条件(Weierstrass neeessary con-dition):为使泛函
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条