说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 三阶拟线性微分方程
1)  third-order quasilinear differential equation
三阶拟线性微分方程
1.
On the basis of a class of second-order quasilinear differential equations,the set of nonoscillatory solutions of a class of third-order quasilinear differential equations,which is similar with the second-order quasilinear differential equations in form is investigated.
在一类二阶拟线性微分方程的基础上,分析了与该类微分方程形式相近的三阶拟线性微分方程非振动解的结构,分析结果表明,三阶拟线性微分方程非振动解的情况同该类二阶拟线性微分方程解的情况相似。
2)  The third order quasilinear differential equation
三阶拟线性常微分方程
3)  second-order quasi-linear differential equations
二阶拟线性微分方程
1.
The existence of positive solutions and the error estimate for Dirichlet boundary value problem and Robin boundary value problem for second-order quasi-linear differential equations with Singular perturbed have been researched by using upper and lower solutions.
本文主要利用上下解方法研究了奇异摄动的二阶拟线性微分方程Robin边值问题正解存在性以及摄动解与退化解的误差估计。
4)  second order semi-linear ordinary differential equation
二阶拟线性常微分方程
1.
This paper studies the existence of positive slolutions of a class of second order semi-linear ordinary differential equations and obtain some sufficient conditions under which the equation has at least two positive solutions by using fixed point thegrem.
本文考虑一类二阶拟线性常微分方程的两点边值问题两个正解的存在性,并利用不动点定理获得了至少存在两个正解的充分条件。
5)  first order quasilinear P.D.E
一阶拟线性偏微分方程
1.
We proper the existence of global smooth solution on Ω={-∞,<x<+∞,t≥0} for the generralized Cauchy problem of first order quasilinear P.
本文研究了下列一阶拟线性偏微分方程的广义Cauchy问题:ut+λ(u)ux=0,u|Γ=φ(x),Γ:x=r(σ),t=s(σ)。
6)  fourth order quasilinear differential equations
四阶拟线性常微分方程
1.
In this paper we are concerned with the fourth order quasilinear differential equations:under the condition thatαandβare positive constants , p(t) and q(t) are continuous functions on an infinite interval [a,∞),a>0.
在此之前,下面两个类似的四阶拟线性微分方程:和已被很全面的研究过了,这篇论文对这类方程是一个补充,更加完整地完成了对这类四阶拟线性常微分方程的解的振动性与非振动性的讨论。
补充资料:二阶线性齐次微分方程

二阶线性微分方程的一般形式为

ay"+by'+cy=f(1)

其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为

ay"+by'+cy=0(2)

称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条