说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 椭圆余弦波
1)  cnoidal wave
椭圆余弦波
1.
Considering the nonlinear feature of wave in shallow waters,the cnoidal wave theory is used to calculate the wave force for submarine slope stability.
针对浅水区波浪的非线性特性,提出了在海底边坡稳定性分析中应用椭圆余弦波理论来研究波浪力的问题,利用非线性弥散关系建立了新的适用于整个水深范围的椭圆余弦波的近似求解方法。
2.
The velocities in the oscillatory boundary layer due to linear and cnoidal waves are simulated based on the incompressible D2Q9 model of the Lattice Boltzmann Method.
将波浪作用下的振荡边界层问题化为振动平板边界层问题,利用格子Boltzm ann方法中不可压缩的模型模拟了线性波和椭圆余弦波作用下的层流边界层流速变化,并和理论解进行了比较。
3.
The problems of diffraction on porous multiple vertical cylinders by nonlinear water waves,such as cnoidal wave,solitary wave and second order Stokes wave,are analyzed.
分析了椭圆余弦波、孤立波以及STOKES二阶波对可渗透圆柱群结构的波绕射问题,给出了各类波对结构的绕射势解及STOKES二阶波对结构绕射作用的积分解式。
2)  cnoidal waves
椭圆余弦波
1.
Numerical solutions of the equations with the internal generation of sinusoidal and cnoidal waves confirm this finding.
域内生成正弦波和椭圆余弦波的数值试验结果证实了该结论。
2.
The bottom boundary layer under cnoidal waves was studied by using Acoustic Doppler Velocimeter(ADV) technique in a laboratory flume.
通过波浪水槽试验,利用ADV测量椭圆余弦波作用下不同底床情况,垂线上各点的瞬时流速。
3.
It is well know that the Boussinesq equations, which govern the fluid motion in shallow-waters of constant depth, have analytical solutions of both cnoidal waves and solitary waves.
众所周知,该方程有行进波解(孤立波及椭圆余弦波)。
3)  cnoidal wave-typed solution
类椭圆余弦波解
4)  cnoidal wave solution
椭圆余弦波解
1.
The cnoidal wave solutions are obtained, the solitary wave solutions included.
应用 Jacobi椭圆函数展开法, 求出了一类(2+1),(3+1)维非线性波动方程的椭圆余弦波解及孤立波解。
2.
A cnoidal wave solution of the two dimensional RLW equation of are obtained by elliptic integral method, and the some estimations the uniqueness and the stability of the periodic solution with both x,y to the Cauchy problem are proved by the priori estimations.
通过椭圆积分求出了二维RLW方程椭圆余弦波解 ,并用先验估计方法证明了该方程Cauchy问题关于小x、y周期解的若干性质和解的唯一性、稳定
3.
A cnoidal wave solutions and the several properties of nonlinear wave equations are obtained by Jacobi elliptic functions.
利用Jacobi椭圆函数得到了非线性波动方程ht+(hu)x+uxxx=0ut+hx+uux=0 uxxt-ut-hx-uux=0ht+ux=0的椭圆余弦波解及若干性质。
5)  Jacobi elliptic_sine(cosine)-like function solution
类椭圆正弦(余弦)波解
6)  Jacobi elliptic cosine function
Jacobi椭圆余弦函数
1.
Nonlinear wave equation and truncated nonlinear wave equation are solved by the Jacobi elliptic cosine function expansion method.
利用Jacobi椭圆余弦函数展开法,对该方程与截断的非线性波动方程进行求解,得到了两类非线性波动方程的准确周期解,它们可以进一步退化为孤波解。
补充资料:椭圆函数与椭圆积分


椭圆函数与椭圆积分
Elliptic function and integral

叮写成R,[丫(。口+·了’(。RZ「犷(二)」的形式,其中R,(二,),尺:(二1)为二,的有理函数,亦可用夸函数及。函数表示。如遇退化情况,则得初等函数。 日函数函数断,旧一乙二八成吧一,)(12)其中:固定,且lm:>o,这是:的偶的整函数。它具有周期1,当将v增加:时,它要乘上‘汗‘今+”,在点:1一刀,十(),十1/2):()I,,,,为整数)处它有单零点。经常讨论的夕函数有四个0,(.一、ilJ(叶·旧司:+引, 一戈一’2厂’ __、。11+rl姚‘.’一洲‘、“’夕(t,十飞一-)·夕3(:)=0(:1+l/2),夕、(:,)=夕(:1)。(13)夕(才/2,二l)满足偏微分方程刁2夕/丙2一妙/决,并有一个简单的拉普拉斯变换。椭圆函数与椭圆积分可用夕函数表示,对维尔斯特拉斯函数而言,:一。‘/、,对雅可比函数或勒让德规范形式的椭圆积分而言,:-;K’/K。 变换理论一个椭圆函数的周期集可用各种原始周期对来描述。由一对原始周期到另一对的改变叫做椭圆函数或椭圆积分的变换。原始周期的商:便经受了一个单应变换:一(二+l,)/(二+d).其中。、.乃,:,d为整数,而D一、d一/)’为正,D叫做该变换的次数。全体一次变换组成一个模群。这些变换的研究是很有理论意义的,对数论有用,并用于对椭圆函数的数值计算。它也和椭圆模函数的研究有关,后者指具有下列性质的解析函数据f(:),只要:与i被模群的变换连系着、那么f(r)便与:(:)代数地联系着。参阅‘傅里叶级数与傅里叶积分”(Fourier series and integrals)条。 [埃尔德里(A.Erdelyl)撰」E(k)一E(二2,k)分别叫做第一种与第二种完全椭圆积分,刀一(1一kZ)’2为补模数.又K‘一K‘(h)一F(二/2,k‘),E‘=E,(k)=F(二/2,k,)。完全椭圆积分作为走的函数时满足二阶线性微分方程,并为居的超几何函数。它们还满足勒让德关系式,KE‘+K’E+KK‘一二/2这是关于k的恒等式。 周期与奇点椭圆积分是多值函数。I的任何两个确定值的差都是某些实数或复数,即所谓周期的整倍数之和。E,F与H都是复变量、一S、n甲的多值函数。这三个函数都在二一士1,士k‘处有支点,而H还在艾一士l)l一’2处有支点。F的周期为4K与2;K‘,E的周期为4E与21(K‘一E‘)由J二o蕊k毛l时完全椭圆积分是实的,故第一(第二)个周期便叫做实(虚)周期。虽则E与F是二一的多值函数,但如果把沿同样路径并对。(l,习采取同样的值而积分得的E,F作为对应值,则君是F的单值函数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条