说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 椭余波
1)  cnoidal wave
椭余波
2)  cnoidal wave
椭圆余弦波
1.
Considering the nonlinear feature of wave in shallow waters,the cnoidal wave theory is used to calculate the wave force for submarine slope stability.
针对浅水区波浪的非线性特性,提出了在海底边坡稳定性分析中应用椭圆余弦波理论来研究波浪力的问题,利用非线性弥散关系建立了新的适用于整个水深范围的椭圆余弦波的近似求解方法。
2.
The velocities in the oscillatory boundary layer due to linear and cnoidal waves are simulated based on the incompressible D2Q9 model of the Lattice Boltzmann Method.
将波浪作用下的振荡边界层问题化为振动平板边界层问题,利用格子Boltzm ann方法中不可压缩的模型模拟了线性波和椭圆余弦波作用下的层流边界层流速变化,并和理论解进行了比较。
3.
The problems of diffraction on porous multiple vertical cylinders by nonlinear water waves,such as cnoidal wave,solitary wave and second order Stokes wave,are analyzed.
分析了椭圆余弦波、孤立波以及STOKES二阶波对可渗透圆柱群结构的波绕射问题,给出了各类波对结构的绕射势解及STOKES二阶波对结构绕射作用的积分解式。
3)  cnoidal waves
椭圆余弦波
1.
Numerical solutions of the equations with the internal generation of sinusoidal and cnoidal waves confirm this finding.
域内生成正弦波和椭圆余弦波的数值试验结果证实了该结论。
2.
The bottom boundary layer under cnoidal waves was studied by using Acoustic Doppler Velocimeter(ADV) technique in a laboratory flume.
通过波浪水槽试验,利用ADV测量椭圆余弦波作用下不同底床情况,垂线上各点的瞬时流速。
3.
It is well know that the Boussinesq equations, which govern the fluid motion in shallow-waters of constant depth, have analytical solutions of both cnoidal waves and solitary waves.
众所周知,该方程有行进波解(孤立波及椭圆余弦波)。
4)  cnoidal wave-typed solution
类椭圆余弦波解
5)  cnoidal wave solution
椭圆余弦波解
1.
The cnoidal wave solutions are obtained, the solitary wave solutions included.
应用 Jacobi椭圆函数展开法, 求出了一类(2+1),(3+1)维非线性波动方程的椭圆余弦波解及孤立波解。
2.
A cnoidal wave solution of the two dimensional RLW equation of are obtained by elliptic integral method, and the some estimations the uniqueness and the stability of the periodic solution with both x,y to the Cauchy problem are proved by the priori estimations.
通过椭圆积分求出了二维RLW方程椭圆余弦波解 ,并用先验估计方法证明了该方程Cauchy问题关于小x、y周期解的若干性质和解的唯一性、稳定
3.
A cnoidal wave solutions and the several properties of nonlinear wave equations are obtained by Jacobi elliptic functions.
利用Jacobi椭圆函数得到了非线性波动方程ht+(hu)x+uxxx=0ut+hx+uux=0 uxxt-ut-hx-uux=0ht+ux=0的椭圆余弦波解及若干性质。
6)  elliptic trochoidal wave
椭圆余摆线波
补充资料:余波
1.江河的末流。 2.引申指少量的水。 3.指馀势未尽的波浪。 4.比喻存留下来的影响。 5.犹馀泽。比喻前人的流风遗泽。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条