1) conformal
[英][kɔn'fɔ:ml] [美][kən'fɔrməl]
共形
1.
New technology of seeker conformal phased array antenna;
导引头共形相控阵天线新技术
2.
Researches on Conformal Radiating Elements and Array Antennas;
共形辐射单元及共形阵列研究
3.
In this paper,a kind of cylindrical EBG structures applied to base station cylindrical conformal dipole array antennas is studied.
对一种柱面电磁带隙结构应用于圆柱共形偶极子振基站天线进行了研究。
2) conformal deformation
共形形变
1.
This paper deals with the conformal deformation of the smooth Riemannian manifold(Mn,g)(n≥2).
本文考查光滑黎曼流形 ( Mn ,g) ( n≥ 2 )的共形形变 。
3) quasiconformal deformation
拟共形变形
4) quasiconformal deformation
拟共形形变
1.
Analytic function with quasiconformal deformation extensions and its Grunsky type inequality
具有拟共形形变延拓的解析函数及其Grunsky型不等式
2.
We shall give the characterizations of those Zygmund functions whose Poisson extensions are quasiconformal deformations.
给出了Zygmund函数的Poisson延拓是拟共形形变的刻画。
3.
We define the Grunsky coefficients for an analytic function in the exterior of the unit disk and discuss these coefficients when the function can be extended to a quasiconformal deformation in the whole plane.
在本文中我们定义了单位圆外一个解析函数的Grunsky系数,并讨论了当该解析函数可以拟共形形变延拓到整个平面时这些Grunsky系数的性质,另外定义了该解析函数的Grunsky算子,并讨论了Grunsky算子的一些基本性质。
5) comformal G-deformation
共形G-形变
6) conformal Maslov form
共形Maslov形式
1.
Firstly,Bernstein type theorem about Hamiltonian minimal Lagrangian graph and the Lagrangian graph with conformal Maslov form,which both can be characterized by having partial harmonic Gauss map are established respectively.
本篇研究了有关高余维图的Bernstein相关问题:首先对Hamiltonian极小和具有共形Maslov形式,这两种高斯映照部分调和的Lagrangian图建立了Bernstein型定理。
补充资料:Riemann曲面的共形类
Riemann曲面的共形类
Riemam surfaces, conformal classes of
Ri.l旧1.1曲面的共形类【Riam.n。灿而ces,c加6价llaidassesof;P皿Ma皿o二xn曲ePxltoeTe蓝Ko.中oPM““e红accHI 由共形等价Rian翅口l曲面(凡en阳田。surface)组成的类.闭形cn迫nn曲面有一简单的拓扑不变量—其亏格弱此外,亏格相同的任何两个曲面是同胚的.在最简单的情形下、两个Rie宜必川1曲面的拓扑等价性保证它们是同一Rien益nn曲面共形类的元素即它们的共形等价性,换言之,保证它们的共形结构相同.例如,对于亏格为O的曲面即同胚的球面,情形就是如此.一般地说,情形却非如此.B.侧e订哈nn早已注意到,亏格g>1的Ri~nn曲面的共形等价类依赖于3夕一3个称为Ri~曲面的(参)模(mo-duli of aRi已比以nn surface)的复参数;对于共形等价Rien笼mn曲面,这些模相同.9=l的情形在本条第四段描述.如果考虑亏格为g并具有n个解析边界分支的紧Rien拍田的曲面,则为使这样的曲面共形等价,必须有69一6十3n个实模参数(g》O,n)O,69一6+3”>0)相同.特别是,对于”连通(”)3)平面域,有3n一6个这样的模;任一双连通平面域共形等价于具有某个半径比的圆环. 上面提到的Rie几以nn的观察是经典瓦e打迢朋曲面(参)模问题(moduli Problem for侧~surfa-ces)的起源,这个问题研究在可能情形下引进的这些参数的性质,在引进时要使得它们能在给定亏格g的凡。m以nn曲面的集合上定义一个复解析结构.对于(参)模问题,有代数方法和分析方法这两条途径.代数方法与研究Ri.比以nn曲面S上亚纯函数的域K(S)联系起来.在闭曲面情形下,K(S)是代数函数域(对g“0是有理函数域,对g=1是椭圆函数域).每个闭Ri日rr曰叮n曲面S共形等价于由一个方程尸(z,w)=O定义的代数函数的Riell.nn曲面,这里尸是C上的不可约多项式.这个方程确定了一条平面代数曲线(al吵raic curve)X,且X上的有理函数域等同于S上的亚纯函数域.RieIT以nn曲面的共形等价性对应于它们的代数函数域的双有理等价性(一致性)或这些曲面确定的代数曲线的双有理等价性,后两者是相同的 分析方法基于Rie叮以nn曲面的几何和解析性质.结果证实通过设置拓扑限制来减弱Rie叮以nn曲面的共形等价性是方便的,代替给定亏格g)1的R比狂阳田叭曲面S,考虑偶(S,f),其中f是某个亏格为g的固定曲面S。到S上的一个同胚;两个偶(S,f)和〔S‘,f’)看作等价,如果存在共形同胚h:s一,S‘,使得映射 (.f‘)一’0 h of:S。~S。同伦于恒等映射.等价类盗(S,f)}的集合称为曲面S、、的Teichm曲er空间(1七沁知m川卜r sP旷e)T(S。).在T(S。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条