说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 弱胎紧
1)  weak tight
弱胎紧
1.
A concept of the weak tight is presented.
提出了弱胎紧的概念,并在弱胎紧的条件下证明了函数序列关于弱收敛概率测度序列积分的极限定理,用其研究了期望泛函序列的若干收敛性,得到了期望泛函序列的、上图收敛的一个充分条件。
2)  weak equi-tight
弱等度胎紧
3)  tight [英][taɪt]  [美][taɪt]
胎紧
1.
If we use multi-index to represent the relation of the two systems,then in the condition that the establishment mapπis one——one,we have:the generated invariant sets are the same if and only if I is secure;further more,if we impose measurable construction on the invariant set, then the generated invariant measures are the same if and only if I is tight.
两个迭代函数系统,其中一个迭代函数系统中的压缩映射可以由另一个系统中的压缩映射函数迭代而得,通过用多重指标I来代表迭代关系,在建立的坐标映射π是1—1的情况下,有生成相同不变集和I安全等价;并且在不变集上加上测度结构后,生成相同不变测度和I胎紧等价。
2.
The common concept example of tight sequence of measures is too abstract,and the form is a little cit complicate.
常见的胎紧测度序列例子概念过于抽象,形式比较复杂,理解相当困难,并且一般的书籍资料很少列举。
3.
L2convergence condition of solution of differential equation group was obtained, and measure {P n } educed by solution process was tight under some condition.
研究核空间的对偶空间的随机微分方程解的性质 ,得到微分方程组解 L 2收敛的条件 ,及在一定条件下解过程导出的测度 { Pn}为胎
4)  feebly compact
弱紧
1.
The first countable semiregularclosed spaces,maximal first countable semiregular spaces,minimal first countable semiregular spaces and the first countable feebly compact semiregular spaces are proved to be equivalent.
证明了第一可数半正则-闭空间、第一可数半正则极大空间、第一可数半正则极小空间、第一可数半正则弱紧空间的等价性。
2.
By using the reduction to absurdity and construction method,the first countable normal-closed spaces,the maximal first countable normal spaces,the minimal first countable normal spaces and the first countable feebly compact normal spaces are proved to be equivalent.
用反证法及构造法,证明了第一可数正规-闭空间、第一可数正规极大空间、第一可数正规极小空间、第一可数正规弱紧空间的等价性。
5)  Weak~* compact
弱~*紧
6)  compact (weakly compact)
弱紧(紧)算子
补充资料:胎紧浸入和套紧浸入


胎紧浸入和套紧浸入
tight and taut immersions

矍数) 图3 犷鳖{ 图4 称空间A CB的嵌人在Z:同调中为单射的(in-Jeetive),如果对于i)0,诱导同态万.(注,22)~H.(B,22)是单的.令HC=R“是R“中带有超平面边界aH的半空间.例如, H=H:(t)={x“R“:z’(x)簇r}.如果f是一个胎紧浸人,h:是一个非退化的高度函数,那么由Morse理论得到f一’(万:(r))C=M在22同调中是单的.于是由连续性,对任一半空间H这种单性都成立.对于闭流形的光滑浸人,这种半空间性质等价于胎紧性.然而,这种半空间定义也能应用于更大范围的从流形和其他紧拓扑空间到RN中的连续浸人或甚至是映射中去.一个例子是胎紧的“瑞士干酪”,它是一个带边的嵌人曲面,见图5.一个到R中的胎紧映射也称为一个完满函数(详rfect丘inction).公 图5今 图6 对于曲线和闭曲面,半空间性质可导出对任一半空间H,f一’(H)是连通的.它等价于R功ehoff两片性质(R朔chofft场。一pieee pro详rty),即R“中的任一超平面日H将M至多分割成两个连通的片,见图3和图4中的胎紧曲面和图2中的非胎紧曲线. 半空间定义将胎紧性置于经典几何学和凸性理论之中.由于胎紧性在RN中的任意将凸包才(f(M))映到RN内的射影变换下是不变的,因此胎紧性是一个射影性质(见射影几何学(projeetive罗。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条