说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 局部投影算法
1)  local projective method
局部投影算法
1.
The comparison between improved local projective method and wavelet analysis for the de-noised Lorenz signal is given.
改进了非线性时间序列降噪的局部投影算法,并应用此算法对含噪Lorenz混沌信号进行降噪,将其与小波分析降噪效果进行比较,实验结果表明:改进的局部投影算法对非线性信号降噪效果十分明显。
2)  Local-projection noise reduction method
局部投影降噪算法
3)  Local-projection method
局部投影方法
1.
We present a Local-projection method based on Takens time delay embedding theorem and shadowing theorem for chaotic signals noise- reduction.
以Takens嵌入定理和影子定理为理论依据 ,提出一种能对混沌信号去噪的局部投影方法。
4)  local projection
局部投影
1.
An improved neighborhood selection method for local projection noise reduction
局部投影去噪的一种改进的邻域选取方法
2.
A local projection noise reduction for nonlinear time series is introduced into fault diagnosis field.
将非线性时间序列的局部投影消噪算法引入到故障诊断领域中,并应用改进的局部投影算法对齿轮箱箱体表面振动信号进行消噪,最后通过计算关联距离熵来进行齿轮箱故障诊断,实验证明,该方法能达到很好的诊断效果。
3.
Although widely applied in nonlinear time series analysis,the performance of noise reduction method via local projection is greatly influenced by the selection of neighborhood.
局部投影降噪算法已广泛应用于非线性时间序列的分析中,但受邻域选取的影响较大。
5)  local projective
局部投影
1.
A low frequency rolling bearing fault diagnosis method based on local projective noise reduction;
基于局部投影降噪的低频轴承故障诊断
2.
Experiment indicates that the local projective algorithm can separate background signals and weak fea-ture signals into different orthogona1 sub-spaces.
综合局部投影算法及小波变换两者的优点,提出了基于局部投影和小波降噪的弱冲击信号的提取方法。
6)  local projection entropy
局部投影熵
1.
In this paper an image matching algorithm based on combining subdivision wavelet with local projection entropy is presented, with using the feature of computational cost scanty of second generation wavelet-subdivision wavelet and the dominance of the local projection entropy.
利用第二代小波 细分小波计算量小和其具有多分辨分析的特点,结合局部投影熵的优势,提出了一种基于细分小波与局部投影熵相结合的图像匹配算法。
补充资料:局部算法


局部算法
algorithm, local

合取式邻域系的引进.对取定的谓词:辅助谓词集为空集;主要谓词是谓词君似,M)(吸不包含在任何珊的最小筱盖之中)和几仪,M)(纵包含在一切叭的最小覆盖之中),邻域系凡构造了最佳的局部算法.对演算图的边的简单性质的最好局部算法也已构造出来.解决Boole函数极小化和离散线性规划问题的各种局部算法也已被提出. 在一类局部算法中最佳局部算法的可计算性是局部算法理论中的一个重要问题.如果给定关于吸任叭,叭任M的对侧,叭)的嵌人的邻域系S,(级,叭)任…三S。(吸,皿)三…,且若局部算法对于邻域系S俘,皿)施行,其中Sk_,(级,叭)生S恤,吸)任S*(级,皿),则称局部算法有指标(i ndex)k.把局部算法定义中的p,,…,只的个数看成局部算法的夺修早(quan‘i‘y of memory)是自然的,设给定谓词尸伙,皿)的一集合少.考虑局部算法定义中出现的一切谓词分划属于少.令A(吸’)是把局部算法A用于助‘的结果,助’‘j(纷),叨‘M.称谓词p,仪,叭)不是(k,l)可廿筝的((kl)一compu‘able),若对任意有指标k及具有取自少的主要谓词君和辅助谓词只,…,只的存储量l的局部算法,存在集合毓’,使得在A(绷协中谓词只对一切元素不是可计算的. 令f(x1,…,x。)是一切变元x,,…,x,的.双e函数(Boolean funCtion)的集合且令只恤,f(x1,…,x。》是谓词(“合取式吸至少包含在一个最小析取范式之中”).对谓词少加上自然的限制,可以发现若幻<①幻5t.2”,则谓词只俘,f(x.,…,x,))不是(k,l)可计算的.有趣的是,谓词尸似,f(xl,…,x,》(“合取式吸至少包含在一个f的静端析取式中”)(见致双e函数的范式(Booleanfunction,normal fonnas of))是(2,l)可计算的,但不是(1,l)可计算的.描述图的给定顶点间最短路径的边的通路的谓词的类似结果也已得到.亦可见吸双e函数的极小化(Boolean function,mini·mization of)的参考文献.【补注】作为特殊领域(在此形式下),这一主题在西方文献中似乎未研究过.它可能关系到心脏收缩阵列算法([All,第8章).(吸,叨)指定一个集合S恤,叭),使得:l)级‘S柳罗),2)5卿,叭)三叭,3)若吸‘叭1,叭好罗:几有S以罗,生皿2三叨1则S。!,叭,)二S牌叨:).这时,集合S.1.叭)称为鱿在,「朴的邻琴(n eighbourhood)·邻域的一个例子是一个简范式中的合取邻域(见压义日e函数的极小化(B加lean functions,minimization of)). 令r是一有限的无向圈(graph),r二M、口M:其中M,二{“:,’‘,a、{是r的顶点集,且令MZ={伍,“.),一,(a。,ar,)}是r的边集·图r的一边R二(a二a)的邻域S:(R,r)由一切与边R关联的边的顶点和其顶点包括在邻域S,(R,r、中的一切边的顶点组成.设戈,(Rr)已被定义,邻域S。(R、r)由一切与邻域又、、(R、r、中顶点关联的边的顶点及其顶点在邻域S。(R.r)中边的顶点组成.同样,可引人图r的任意顶点a,的邻域S,(马,r),·…S,(“,·r), 令月牌,叭)二,君(吸,叨)为定义在吸任绷的对‘乳叭)_七的二目谓词系,它们可分为两个不相交的子集<尸:二,只>及<此十,一、月>·第一个子集中元素称为一主要谓词(main Predi以tes),第二个集中元素称为辅助谓词(auxilia仃predi口tes)向量了二(,,,气)称为信良向量(informatiol:veCtor),若气‘{01、八}(i二1,1了).向量“称为在罗中对致容许的(则rrnissible),若对切气护△,等式,二只侧,叭)被满足对叨中的吸的 一切容许信息向量的集合J(吸珊,,称为涯在叭中的信息集(informatl,)n set) 令绷二(吸:一吸、)且(气,,…,:户任J傲,明)‘打二卜一’们.集合吸’二{乳””’‘…,以户,,}称为对叭容许的.对叭容许的一切集合朋‘的类J(叭)称为在p,!·只谓词系一上集合纽的信粤举(in如。ation dass)显然,邻域S(吸,绷)定义一邻域S以“IJ‘绷’) 引进一函数系价,·,甲,,使得 甲(叽“、’.5以”“,珊’))二(刀,,户)函数仍将定义在一切满足班”沟‘叭‘的对(9l”’S似’‘勾,纽’))1_、其中叭飞J(纽),且满足如下条件:日若i特J,则:笋吟2)在叭‘中把纵’‘’‘换成吸“成而得的集合或’对绷是容许的,即烦‘。j(叭).为简便起见,把对似“‘”s仪深,.叨‘))记为(级.“,二,“.5叭‘) 在上述某些集合中引进偏序:粉在集合M,={01,八}上取么<0,A<12)在一切长度为i的信息向量集M勺 1.,若气簇戏(i=l二,I),则取‘,.,一幻蕊谓:,…,践),3)在有标号的元素集上,若(:1一叼簇朋,一戏),则取扩,们簇州,色4)在集合M二二匕,。,J(叭)L一若第一,纽:及叭犷属于同一信息类I(绷),第一,(。一,氏、毛甲1,1一,乃)来自罗”’‘叨犷和级‘扮。叭主,则取绷厂簇绷厂,5)在形式为S卿“「递‘.珊’)的邻域集上,取s,共S:,若51二S(吸“’闺叨补「卜,二仪”,角纽孙当且仅当5恻,卿,、=S卿,叭),且由条件黔”八任凡和毋‘,,南‘52,叮得出(下、、一,T,,簇(舀、‘·,占;)· 令A和B是集合l)一5〕之一的兀素.若月)9且B)A,则4和B称为等信息量的(e qul,in fomati\,e),记为A艾B·函数价仪,,l,。·、,S叭’)称为乎呷的(monotone),若当S,‘S:时,对于I二!。一、l子一;毋(吸,。,二,:,,S、.筑:)簇甲(吸,刀一方.万,妞J) 局部算法的确定还褥要引进一个排序算法(o rderingal笋ithm)A,令M是任意一个有信息向贫的元素的集合,且令N二笼1一科考虑满足公”任MC‘N,气二劫的一切对仪”气J、的集合M又戈算法A二对集合M艾N排序.局部算法通完全由谓词系尸l4,只,主要谓词尸,一只及辅助谓词Pr,,,·尸的子分划,一单调函数系少1,二价}中=俄州,,一丙,N,纷’)算法A:决定. 令珊‘二刁几渺’,’“吸’‘J(皿)局部算法的第一步可描述如卜‘.算法硕,用于集合M艾N,其中肠二叭‘;对有序序列的第一个对以“,勺了)计算鸣侧“、’民,s.我’)二(产、‘’助,然后把元素以’‘勾换成州’“若(:,,一,幼二(刀,、·,几)则取第二个对,等等;若对」刀元家(犷”;飞、等式甲榔,,,,‘认,5.叭‘)=切、,补)为真,则检查过一切M艾N中的对之后局部算法终止否则在用新向量谓,…,尽)替换(,,,二,鸟)之后,若不再有其信息向量的前:目中至少有一个符号A的元责,则算法A终止.若有这样的元素,则局部算法的第一步终止.设已执行过的局部算法A的步数为。,第。十l步的进行除把集合绷’用淤二替换外,同第一步一样.其中妍厂是叨’经过局部算法峨头。步转换的结果.由于们(,二1…协的单调性质,经过有穷步后局部算法4将终止. 局部算法的最初定理是最佳算法的唯一性定理(uniquenes、theorenl of a best algorithm)及最佳算法的存在性定理(theore伟on the exlsten优‘〕i’abest algorlthm).第一个定理讲主要谓词的演算结果是独立于算法A二(其中集合叨’的元素已取序).第二定理断言在非常广的条件下最佳矽邵草烤(1”lal即nthm)的存在.所谓最佳局部算法是指它能利用一给定的邻域系计算具有取定辅助谓词的给定主要谓词,减要其他任何有相同邻域系及主要和辅助谓词的局部算法做得到 寻找显式的最佳局部算法的问题L三被最小攫盖的综合的算法解决.设给定数组<吸,,,,以、,群}、一、场,“),其中吸,是个集合,片是吸,的复杂性,从>0(;二;、q)、:以七*,数组(*1一,*,,的复杂性是工了线·问题是如何用具有最小复杂性的集合吸1,吸;构造M的筱盖,对每个吸引进邻域系£、…、5。、】类似于局部算法「目g咐由m,l咧;a月rop“TM月oKa月‘。“益] 规定一个结构集元素的性质并在每一步只利用该元素邻域的信息的算法.对干各种离散最优化问题的能行算法的存在性和非存在性问题用局部算法可以自然地表述. 给定集族{纽:叨任M},且对满足吸任叨的每个对
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条