1) variable Calderón-Zygmund kernel
可变Calderón-Zygmund核
1.
In this paper,the continuity for some multilinear operators generated by the singular integral operators with variable Calderón-Zygmund kernel and Lipschitz functions on some Hardy and Herz-type spaces are proved.
证明带有可变Calderón-Zygmund核的奇异积分算子与Lipschitz函数生成的多线性算子在Hardy和Herz型空间的连续性问题。
2.
In this paper,we prove the weighted continuity for some multilinear singular integral operators with variable Calderón-Zygmund kernel on and Morrey spaces.
本文证明了一类带可变Calderón-Zygmund核的多线性奇异积分算子在Lp和Morrey空间的加权连续性。
2) μ-Calderón-Zygmund kernel
μ-Calderón-Zygmund核
1.
The boundedness of some generalized oscillatory singular integral operators with μ-Calderón-Zygmund kernel was obtained.
Ricci和Stein证明了一类振荡奇异积分算子的Lp(Rn)(1
2.
The boundedness of a class of oscillatory singular integral with μ-Calderón-Zygmund kernel on Lp(Rn)(1<p<∞) was obtained.
对于一类具μ-Calderón-Zygmund核的振荡奇异积分算子,已经得到了它的Lp(Rn)(1
3) multilinear oscillatory integral
广义Calderón-Zygmund核
4) θ-type Calderón-Zygmund kernel
θ型Calderón-Zygmund核
1.
The maximal multilinear singular integral operator of θ-type Calderón-Zygmund kernel is discussed,and the L~p-boundedness for this kind of maximal operators is proved.
研究了θ型Calderón-Zygmund核的多线性奇异积分极大算子,证明了这类极大算子的L~p-有界性。
5) variable Calderon-Zygmund kernel
可变Caldero′n-Zygmund核
1.
Fractional integral operators with variable Calderon-Zygmund kernels are special cases of the fractional integral operators.
可变Caldero′n-Zygmund核分数次积分算子是一种特殊的分数次积分算子,而分数次积分算子是调和分析的重要算子,它不仅在调和分析中有着重要的地位而且在偏微分方程中也具有及其重要的作用,所以有必要研究可变Caldero′n-Zygmund核分数次积分算子的一些性质。
6) Calderón-Zygmund operator
Calderón-Zygmund算子
1.
A new Hardy space H_b~p,where b is a pars- accretive function,was recently introduced and the boundedness of Calderón-Zygmund operators T from the classical Hardy space H~p to the new Hardy space H_b~p was also proven if T~* (b) = 0.
众所周知,如果Calderón-Zygmund算子T满足T~*(1)=0,则算子T在H~p,n/(n+ε)
2.
As an appli- cation,the authors prove that the commutators generated by Calderón-Zygmund operators with Osc_(exp L~r) (μ) functions for r≥1 satisfy the same weak estimates,where Osc_(exp L~r) (μ) RBMO(μ)с if r>1 and Osc_(exp L~r)(μ)=RBMO(μ) if r=1.
作为应用,证明了由Calderón-Zygmund算子和Osc_(exp L~r)(μ)函数生成的交换子在弱Herz空间中的弱型估计,其中r≥1。
3.
The theory of singular integrals especially the commutator of Calderón-Zygmund operator has been extensively applied to the partial differential equations and other pertinent fields.
奇异积分理论特别是Calderón-Zygmund算子广泛应用于偏微分方程及其它相关领域的研究。
补充资料:唐黉(hóng洪)
唐黉(hóng洪) 唐黉(hóng洪) 清代外科学家。字芹洲,一字玉峰。昆山(今属江苏)人。长于外科,采集王肯堂之《证治准绳·疡医》、陈实功之《外科正宗》、祁广生之《外科大成》等书中之简要易懂部分,辑成《外科心法》十卷(1775年)。后又辑《外科选要》二卷(1776年),便于初学者习读。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条