1) asymptotically almost periodic solution
渐近概周期解
1.
Study on mild asymptotically almost periodic solution to a class of semilinear differential equations;
一类半线性微分方程的温和渐近概周期解
2.
Using the theory of fixed point,we give a theorem about the existence of asymptotically almost periodic solution for a class of delay integral equations.
利用不动点理论,给出了一类时滞积分方程渐近概周期解的存在性定理。
3.
In this paper,we study the existence of asymptotically almost periodic solutions of second-order neutral delay differential equations with piecewise constant argument.
讨论了二阶中立型逐段常变量微分方程d2dt2(x(t)+px(t-1))=qx2t+21+g(t,x(t),x([t])),渐近概周期解的存在性。
2) asymptotically almost periodic solutions
渐近概周期解
1.
In this paper,we discuss the existence of the existence of asymptotically almost periodic solutions of second-order neutral differential equations with piecewise constant argument by asymptotically almost periodic sequence solutions of difference equations.
通过构造差分方程的渐近概周期序列解,研究了二阶中立型逐段常变量微分方程渐近概周期解的存在性。
2.
Particularly,we discuss the necessary and sufficient conditions for the existence and uniqueness of asymptotically almost periodic solutions for the first-order differential equation u′+▽Φ(u)=h(t),where▽Φdenotes the gradi- ent of the convex functionφon R~N.
对于一阶微分系统u′+F(u)=h(t),其中F为R~n上的严格单调算子,本文给出了其渐近概周期解存在和唯一的一个充分条件和一个必要条件。
3.
We present existence theorem in C(R+) for asymptotically almost periodic solutions of second-order equations with gradient operators by means of the properties of asymptotically almost periodic functions.
利用渐近概周期函数的性质得到带梯度算子二阶方程的渐近概周期解在C(R+)中的存在性,同时利用迭代法和线性常微分方程的概周期解的存在性和唯一性,得到R上此方程渐近概周期解的存在和唯一性。
3) asymptotically almost periodic
渐近概周期
1.
In recent years, many scholars had studied the existence of the solution of Logistic equation, and this equation had been discussed when the two important indexes r and k are periodic, almost periodic or asymptotically almost periodic functions (Reference were searched in [1~7]).
在介绍了概周期函数以及渐近概周期函数等相关概念及前人主要研究成果之后,本文对Logistic方程解的存在性及解的性质进行了研究,给出的主要结果如下: 1在魏凤英、王克等人研究结果的基础上给出了下列Logistic微分方程的渐近概周期解,并且证明了此解是一致稳定的。
4) asymptotically almost periodic sequence solutions
渐近概周期序列解
1.
Existence of asymptotically almost periodic sequence solutions for some difference equations;
一类差分方程的渐近概周期序列解的存在性
5) asymptotically periodic solution
渐近周期解
1.
We study the periodic solutions and the asymptotically periodic solutions of difference equations with continuous variables, and sufficient conditions for the existence of periodic solutions and asymptotically periodic solutions are obtained.
研究了具连续变量的差分方程的周期解和渐近周期解,并分别获得了周期解和渐近周期解存在性的几个充分条件,我们的结果推广了Agarwal等人的相应结果。
6) asymptotically almost periodic function
渐近概周期函数
1.
Some qualities on asymptotically almost periodic function;
渐近概周期函数的几个结果
2.
But except for almost periodic function, others such as asymptotically almost periodic function, weakly almost periodic function and pseudo almost periodic function, theories of relative compactness for those functions are not established.
但是除了概周期函数,其它的例如渐近概周期函数,弱概周期函数,伪概周期函数等概周期型函数集的列紧性理论并未建立,这样使得在某些微分方程的概周期型解存在性理论研究过程中,不动点定理的运用受到了很大的限制,基本都要归结为构造压缩映射。
补充资料:渐近稳定解
渐近稳定解
asymptotically - stable solution
渐近稳定解[asymp咖回ly一stable sduti佣;~"ror卜,ee姗ycro曲,栅e peoe“。el 一个微分方程组的解,它在月刃乃旧oB意义下是稳定的(见加.lyl舰旧稳定性(Lyapunov stability)),并且吸引具有足够接近的初始值的一切其他解.例如,考虑方程组 卒二f(r.,、‘。 a了J、右边的函数f(:,考)对于一切:):,考任R”有定义,并使得方程组(*)的解存在而且是唯一的.这时,方程组(*)的解 x(;,乱),x(:,乱)=老。是渐近稳定解,如果这个解同一切与其足够接近的解 x(:,句,}若一蜀}
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条