1) asymptotic periodic point
渐近周期点
1.
In this paper,it first discusses that if f has the chaotic set S,then f has no more than one asymptotic periodic point in S.
本文首先讨论了若S为f的混沌集,则f在S内至多只有1个渐近周期点;若S为f的混沌集并且f(S)是S的子集及f所有周期点的周期都大于1,则f在S内不存在渐近周期点。
2.
In this paper,it first discusses the existence of f has the asymptotic periodic point in its chaotic set S.
首先讨论了f在混沌集S中存在渐近周期点的存在性问题,然后通过讨论得到:若S为f的混沌集,则f在S内至多只有一个渐近周期点。
3.
After that the authors study the existence of its asymptotic periodic point.
进一步探讨了渐近周期点在该系统下的存在性,扩展了离散混沌系统的研究范围。
2) asymptotically periodic
渐近周期
1.
Persistence and global stability for asymptotically periodic Lotka-Volterra patch-systems with continuous delay;
具有连续时滞的渐近周期Lotka-Volterra斑块系统的持久性和全局稳定性
2.
These include fading memory systems,in general,almost pe- riodic systems,asymptotically periodic systems and asymptotically strong periodic systems.
从衰退记忆系统的子类包括概周期系统,渐近周期系统,渐近强周期系统,找到了LTV系统的可分子空间即渐近强周期系统。
3) asymptotically periodic solution
渐近周期解
1.
We study the periodic solutions and the asymptotically periodic solutions of difference equations with continuous variables, and sufficient conditions for the existence of periodic solutions and asymptotically periodic solutions are obtained.
研究了具连续变量的差分方程的周期解和渐近周期解,并分别获得了周期解和渐近周期解存在性的几个充分条件,我们的结果推广了Agarwal等人的相应结果。
4) asymptotically strong periodic
渐近强周期
1.
These include fading memory systems,in general,almost pe- riodic systems,asymptotically periodic systems and asymptotically strong periodic systems.
从衰退记忆系统的子类包括概周期系统,渐近周期系统,渐近强周期系统,找到了LTV系统的可分子空间即渐近强周期系统。
5) asymptotically almost periodic
渐近概周期
1.
In recent years, many scholars had studied the existence of the solution of Logistic equation, and this equation had been discussed when the two important indexes r and k are periodic, almost periodic or asymptotically almost periodic functions (Reference were searched in [1~7]).
在介绍了概周期函数以及渐近概周期函数等相关概念及前人主要研究成果之后,本文对Logistic方程解的存在性及解的性质进行了研究,给出的主要结果如下: 1在魏凤英、王克等人研究结果的基础上给出了下列Logistic微分方程的渐近概周期解,并且证明了此解是一致稳定的。
6) Asymptotic periodicity
渐近周期性
补充资料:渐近公式
渐近公式
asymptotic formula
渐近公式}朋yolp肠cl栩.lula二~Irror~绷如甲My月a} 包含符号。,O或等价记号一(函数的渐近相等(as,mPtotiee甲ality))的公式 渐近公式的例f 牡n一丫二一x十口(义舌%*0、 )5戈l+‘)(义‘),、。0;茸、十芜川、一丫’℃一,关二 “(一‘,一下:_于“一笑(7r以)是不超过二的素数的个数,. ‘M,B因脚月撰【补注】关于符号。O和一的意义,例如见阵11或!AZ}.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条