1) trigonometric series method
三角级数法
1.
Simulation of internal force of elastic foundation beam using trigonometric series method;
三角级数法模拟弹性地基梁内力
2) trigonometric series
三角级数
1.
Application of trigonometric series for rigid wakes analysis of rotor aerodynamics in hover;
悬停状态旋翼固定尾迹分析中三角级数的应用
2.
On the super bound of partial sum of a trigonometric series;
关于一个三角级数的部分和的上界
3.
Exact solution of Burgers equation by trigonometric series and Maple
用三角级数和Maple软件求Burgers方程的精确解
3) trigonometrical series
三角级数
1.
In this poper, we select the fie-cural function w (x,y) and stress function Ψ(x,y), which consists of the trigonometrical series and polynomial expression.
选取由三角级数和多项式组成的挠度函数w(x,y)和应力函数Ψ(x,y),得到相邻边自由另两边任意支承矩形厚板的精确解、它不需要繁琐地叠加。
2.
In these solutions,some trigonometrical series and polynomial expression are selected for ψ(x,y) of this problem.
选择一些三角级数和多项式作为该问题的挠度函数W(x,y)和应力函数ψ(x,y),从而得到了两相邻边固定另两边任意支承矩形厚板弯曲问题的精确解。
3.
In this paper,the flexuous function w(x,y)and stress function Ψ(x,y)are selected,which consist of the trigonometrical series and polynomial expression,and the linear algebraic equa-tions are obtained solvable for rectangular cantilever thick plates under uniform surface-load.
选取由三角级数和多项式组成的挠度函数 w(x,y)和应力函数ψ(x,y),得到求解在均布荷载作用下,矩形悬臂厚板的线性代数方程组。
4) method of trigonometric series
三角级数能量解法
5) Navier dual-trigonometric series
纳维叶双三角级数法
1.
The basic differential equations of orthotropic sandwich with initial deflection was established,and solved by Navier dual-trigonometric series.
方程组的求解采用改进的纳维叶双三角级数法,得到了临界屈曲载荷的计算公式。
6) single triangular series
单三角级数
1.
In this paper,single triangular series and the method of least square about collocation lines are used to solve the problem of the bending of thin rectangular plate.
应用单三角级数及最小二乘配线法解矩形薄板的弯曲问题。
补充资料:共轭三角级数
共轭三角级数
conjugate trigonometric series
共辘三角级数[阴juga加trig佣翩e示c Series一绷脚-脱““‘成lp呱,o“oMeTp“叼eeK”云P”」! 与几角级数 “门.‘允 J二二—一十)“C()凡n_兀一+一n~5111月丫 2,尸l’‘共辘的三角级数是 厅二艺瓦以)Sn‘卞一“ns,n”I 月飞这两个级数分别是级数 ao吞 管一侣:‘一ll,,)二·的实部和虚部,其中:二了.与函数f(劝的卜oufl(?f级数共扼的三角级数万【月的部分和公式是瓦‘·,二告少‘,‘·‘r一)dt,其中D。(X)是共扼的Di‘山let核(Dirich一et kernel).如果f(x)在〔一二,司上是有界变差函数,则级数万汀1在点x0收敛的必要充分条件是共辘函数(conju乎te funCtion)入x0)存在,这时,f(x0)就是级数万川的和.如果f(x)是卜二,二〕上的可和函数,则级数介〕儿乎处处可用戊次欣s认ro求和法(C,哟及Abd一Poisson求和法求和,并且几乎处处同f(x)的共辘函数一致.如果函数入x)是可和的,则共扼级数孑了l是它的Fourier级数.函数月x)不一定是可和的;在LebesgUe积分的推广,例如A积分(A一integral)和D政s积分(BokS integral)的情况下.共扼级数万汀1总是共扼函数的Fourier级数.[补注】文献[7】是一篇很长很有用的综述.文献!Al〕,[A2】是标准文献.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条