1) variational axiomatic kind
变分公理
2) variational formula
变分公式
1.
Based on the stationary variational formula satisfied by the propagation constant of planar line, the variational formula of the bilateral slot line propagation constant which takes only the slot tangential electric field as variable is given.
运用镜像法简化了偶模激励双面槽线的分析模型,基于平面传输线传播常数满足的稳定的变分公式,给出了仅以槽口切向电场为变量的传播常数满足的变分公式。
2.
A novel stationary variational formula in spatial domain and in spectral domain respectively for calculation of planar line propagation constant is presented based on the exact theory of electromagnetic field.
基于严格的电磁场理论 ,给出了一种新的分析平面传输线传输特性的空域及谱域的稳定变分公式 。
3) separation axioms
分离公理
1.
In this paper,a new series of separation axioms on L-topological are introduced,their relationship are investigated.
在L-拓扑空间中,针对子集的情形给出了一套新的分离公理,研究了它们之间的关系。
4) separation axiom
分离公理
1.
Lower-level separation axioms in pre-topological spaces
预拓扑空间中的低阶分离公理
2.
In this paper,a set of weak separation axioms in L-fuzzy topological spaces are defined and studied by giving the concept of the crisp-degree of pseudocrisp set.
在L-模糊拓扑空间中引入准分明集的分明度的概念,在此基础上,定义了一组新的弱分离公理,即WiT3,WiT4(i=1,2,3)分离公理,它们比文[1]中的WT3,WT4分离性还要弱,并且证明了它们在L-模糊拓扑空间满层的条件下彼此等价,最后证明了它们也是一般拓扑学中分离性概念在Lowen意义下的“好的推广”。
3.
In this paper, weak T*-separation axioms in topological molecular lattices are introduced and studied by using strongly semiopen neighborhoods.
利用强半开邻域引入和研究了拓扑分子格的弱Ti*分离公理,这是TI*分离公理的 推广(I=1,2,3,4)。
5) decomposition axiom
分解公理
6) axiom of specification
分类公理
补充资料:变分原理(复变函数论中的)
变分原理(复变函数论中的)
omplex function theory) variational principles (in
f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条