说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非振动
1)  nonoscillation
非振动
1.
Nonoscillation for a Differential System with Deviated Argumets on Measure Chains;
测度链上一类具偏差变元的微分方程组的非振动
2.
Nonoscillation of Second-order Half-linear Delay Difference Equations;
二阶半线性时滞差分方程的非振动性(英文)
3.
Oscillation and nonoscillation for quasilinear differential equations of second order;
二阶非线性微分方程的振动与非振动准则
2)  nonoscillatory solution
非振动解
1.
Existence of nonoscillatory solutions for forced higher order differential equations;
带强迫项的高阶微分方程非振动解的存在性
2.
The existence of nonoscillatory solution of a third order quasilinear differential equation;
一类三阶拟线性微分方程非振动解的存在性
3.
The existence of nonoscillatory solutions for higher order nonlinear neutral system of difference equations;
一类高阶非线性中立型差分方程组非振动解的存在性
3)  non-oscillatory solutions
非振动解
1.
The purpose of this paper is to prove the existence of non-oscillatory solutions to second-order neutral time-lag differential equation with positive/negative coefficient by using contraction-image principle through defining an operator from a bounded,closed,and convex subset into Banach space.
通过定义有界闭凸子集到B anach空间上的一个算子,应用压缩映像原理讨论了带有正负系数的二阶中立型时滞微分方程非振动解的存在性,得到该方程非振动解存在的一个充分条件。
2.
By using Banach compression-imaging principle,the authors have made a discussion over the asymptotic behavior of non-oscillatory solutions to first-order neutral differential equation with forcing term,obtaining the sufficient conditions for every non-oscillatory solutions to the equation hereinabove tends to zero when t tends to infinity(t→∞).
应用压缩映像原理讨论了一类带强迫项的一阶中立型微分方程非振动解的渐近性,得到了该方程的所有非振动解当t→∞时趋于零的充分条件。
3.
The existence and asymptotic behaviour of non-oscillatory solutions of this equation are studied.
对二阶中立型时滞差分方程Δ(rnΔ(xn+pnxn-τ))+qnf(xn-σ)=0非振动解的存在性及渐近性进行了研究。
4)  non-oscillatory solution
非振动解
1.
Consider a class of neutral difference equation with !maxima", some results for the asymptotical properties of all non-oscillatory solutions of the equation are obtained, that is, sufficient conditions for all non-oscillatory solutions {x-n} satisfying {lim}n→∞ x-n=0 or {lim}n→∞|x-n|=∞ are obtained, which extend the corresponding results of the references.
 考虑一类带有极大值项的中立型差分方程,得到了方程非振动解渐近性的若干结果,即方程的所|xn|=∞的充分条件,推广了已有文献中的相关结果。
2.
This paper discusses the asymptotic behavior of non-oscillatory solutions of a class higher order linear differential equationy(n)+p(t)y′+q(t)y=0Some sufficient condition for the asymptotic behavior of non-oscillatory solutions of the equation are obtained.
研究了一类高阶微分方程y(n)+p(t)y′+q(t)y=0解的渐近性质,获得了该类方程非振动解的渐近性的充分条件。
3.
Asymptotic behavior for the oscillatory solutions and non-oscillatory solutions for a class of high order non-linear neutral differential equations.
本文研究了一类高阶非线性中立型泛函微分方程的非振动解及振动解的渐近性质,得到了其非振动解及振动解的一些相关的渐近条件,推广了有关文献的结果。
5)  nonoscillation
非振动性
1.
On the oscillation and nonoscillation of nonlinear differential equations with piecewise constant arguments;
具有分段常数变元的非线性微分方程的振动性和非振动
2.
Research on the Theory of Oscillation and Nonoscillation of Neutral Partial Difference Equations;
关于中立型偏差分方程的振动性与非振动性理论的研究
3.
Oscillation and Nonoscillation of Second-Order Half-Linear Differential and Impulsive Differential Equations;
二阶半线性常微分方程和脉冲微分方程的振动性与非振动
6)  nonoscillatary solution
非振动解
1.
Asymptotic property of the nonoscillatary solutions of a class of nonlinear parabolic differential equations of neutral type is discussed.
研究了一类中立型非线性抛物方程非振动解的渐近性质,利用在一定条件下将方程的强迫项目并入首项(ut项)的方法,得到了在混合边值条件下方程的所有非振动解渐近收敛于零的充分条件。
2.
Using Krasnoselskii fixed point theorem, the necessary and sufficient conditions for existence of nonoscillatary solutions are obtained, which tend to constant vector with positive components(or negative components) for a class of first order nonlinear neutral differential systems.
利用Krasnoselskii不动点定理,得到了一类非线性中立型方程组存在趋于均为正(负)分量的非振动解的充分必要条件。
3.
Sufficient conditions are obtained for oscillation of all solutions and existing nonoscillatary solution of the equations.
研究含多时滞抛物型方程在混合齐次边值条件下解的振动性质,获得了所有解振动的充分条件及存在非振动解的充分条件。
补充资料:非振动区间


非振动区间
Don-ostiUation interval

非振动区间【咖一仍d肠血扣加忱抖目;aeoc职朋,”仙即。·Me洲了I习引,不共辘区间(泊把八司ofdj汝刀nj叫尹cy) 实轴R上的一个连通区间J,使得给定的n阶实系数线性常微分方程 x(·)+al(r)x(”一’)+一+a。(t)x二o(*)的任一非零解x二x(t)在该区间上有多于n一1个零点,这里m重零点算作m个.(,)的解在非振动区间上的性质已得到很好研究(例如,见【1J一【3」).非振动区间概念可有一些到线性微分方程组、非线性微分方程以及其他类型方程(如具有变差自变量的差分方程)的推广.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条