1) nonlinear vibration
非线性振动
1.
Homotopic perturbation method for nonlinear vibrations of bimetallic shallow shells of revolution;
双层旋转扁壳非线性振动分析的同伦摄动法
2.
Adaptive fuzzy sliding mode control for nonlinear vibration reduction of structure;
结构非线性振动的自适应模糊滑模控制
3.
Combination resonance of laterally nonlinear vibration of axially moving systems;
轴向运动体系横向非线性振动的联合共振
2) nonlinear oscillation
非线性振动
1.
On the nonlinear oscillation of internal sliding friction in particulate matter;
颗粒物质内部滑动摩擦力的非线性振动现象
2.
Establishment and Approximate Solution to Horizontal Equation in Case of Nonlinear Oscillation of Plane Pendelum;
平面摆非线性振动水平分量方程的建立及其近似解
3.
By using averaging method for nonlinear oscillation, internal resonance, primary resonance,and double resonances of the first order approximation solutions and their corresponding steady state solutions of the system are obtained.
应用非线性振动的平均法,求得了系统满足3∶1型内共振、主共振及双重共振条件的解。
3) non-linear vibration
非线性振动
1.
Study and application of non-linear vibration theory in vibratory conveyer;
非线性振动理论在振动输送机中的研究与应用
2.
Compare the results of two methods of non-linear vibration of a spur gear pair;
直齿轮副非线性振动分析中两种解法的结果比较
3.
The non-linear vibration in two-dimension of three flexible symmetric simple harmonic oscillator;
对称四弹性振子的二维非线性振动
4) nonlinear oscillations
非线性振动
1.
ontrolling chaos is surveyed as a new direction in nonlinear oscillations and vibration control in this paper.
概述了近年来在控制混沌这一非线性振动和振动控制新的研究方向上的进展,首先介绍了控制混沌的内容和意义,然后阐述了控制混沌的几类主要方法,包括输送控制、镇定控制和非线性系统理论应用的原理和发展。
2.
This paper begins with surveying the progress madein the new research field of chaos control in nonlinear oscillations.
综述了控制非线性振动中混沌这一新研究领域的若干进展,即非线性振动中混沌的抑制、非线性振动的输送控制、混沌吸引子中不稳定周期性轨道的稳化、随机控制、自适应控制及简单反馈控制在控制混沌中的应用,指出了各种方法的原理、应用、特点和局限制。
3.
The nonlinear oscillations of fluid conveying pipes under parametric and external excitations were researched.
研究了参数激励和外激励联合作用下输流管道的非线性振动问题。
5) Non linear vibration
非线性振动
1.
In this paper, the chaotic motions of non linear vibration systems are studied.
分析了一类非线性振动系统的混沌运动。
6) vibration nonlinearity
振动非线性
1.
Taking the superposition principle as a criterion and calculating dynamic response of Duffing-type sliding systems to double-frequency harmonic excitations,the vibration nonlinearity of systems and their influence factors are analyzed.
以叠加原理为判别准则,通过计算杜芬型滑移系统对双频简谐激励作用的动力响应,分析系统的振动非线性及其影响因素。
补充资料:非线性振动
非线性振动 nonlinear vibration 恢复力与位移不成线性比例或阻尼力与速度不成线性比例的系统的振动。一般说,线性振动只适用于小运动范围,超过此范围,就变成非线性振动。非线性系统的运动微分方程是非线性的,不能用叠加原理求解。方程中不显含时间的非线性系统称为非线性自治系统;显含时间的称为非线性非自治系统。保守非线性自治系统的自由振动仍是周期性的,但其周期依赖于振幅。对于渐硬弹簧,振幅越大,周期越短;对于渐软弹簧,振幅越大,周期越长。非保守非线性自治系统具有非线性阻尼,阻尼系数随运动而变化,因而有可能在某个中间振幅下等效阻尼为零,从而能把外界非振动性能量转变为振动激励而建立起稳定的自激振动(简称自振)。弦乐器和钟表是常见的自振系统。周期地改变系统的某个参量而激起系统的大幅振动称参变激发。当系统的固有频率等于或接近参量变化频率的一半时,参变激发现象最易产生。具有非线性恢复力的系统受到谐激励时,其定常受迫振动存在跳跃现象,即激励频率ω缓慢变化时,响应振幅一般也平稳变化,但通过某些特定ω值时,振幅会发生跳跃突变。具有非线性恢复力且固有频率为ωn的系统,在受到频率为ω的谐激励时,有可能产生频率为ω/n(≈ωn)的定常受迫振动(n为正整数),称为亚谐共振或分频共振。它的出现不仅与系统和激励的参数有关,而且依赖于初始条件。亚谐共振可以解释为,由于非线性系统的响应不是谐和的,频率ω/n的响应中存在频率为ω的高次谐波,激励对高次谐波作功而维持了振动。干扰力频率接近自振系统固有频率到一定程度时,所激起的振动中只包含干扰力频率而自振频率被俘获的现象称为同步。同步现象已应用于振荡器的稳频以及振动机械的同步激振。近年来发现,在非线性系统中还会出现貌似随机而对初始条件极为敏感的运动,称为混沌。上述现象都无法用线性理论加以解释。机械和结构的自激振动、亚谐共振等一般都能造成危害,必须防止。另一方面,自激振动、同步等现象也在物理学和工程技术中得到应用。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条