说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非线性Lipschitz算子
1)  nonlinear Lipschitz operator
非线性Lipschitz算子
1.
We introduce the notion of f-M spectral theory for the nonlinear Lipschitz operators,and give relative theory.
引入非线性Lipschitz算子的f-M谱概念,建立了相关理论。
2)  nonlinear Lipschitzian semigroup
非线性Lipschitz算子半群
3)  Nonlinear semigroup of Lipschitz operators
非线性Lipschitz算子牛群
4)  nonlinear semigroup of Lipschitz-α operator
非线性Lipschitz-α算子半群
1.
First,the theorem of the generation of the nonlinear semigroup of Lipschitz-α operator is established.
首先给出非线性Lipschitz-α算子半群的生成元存在性的结果;然后介绍在Lipschitz对偶的思想下的非线性Lipschitz算子半群生成元的存在性。
5)  Lipschitz nonlinearities
Lipschitz非线性
6)  Lipschitz nonlinear systems
Lipschitz非线性系统
1.
A new design method of state observer for Lipschitz nonlinear systems;
Lipschitz非线性系统状态观测器设计新方法
2.
The design method of Lipschitz nonlinear systems status observers is applied to the design of inverse system of nonlinear systems.
将Lipschitz非线性系统状态观测器设计方法应用于非线性系统的逆系统方法设计中,解决了在利用逆系统方法实现非线性系统反馈线性化的过程中由于系统状态的不可知,而使系统不能满足反馈补偿的问题。
补充资料:非线性算子半群


非线性算子半群
semi-group of non-linear operators

非线性算子半群【脚顽一,.平of咖~h粉盯卿rat份s;no,y印yll皿a He”HHe盆“以0“epaTopool定义并作用在B以朋ch空间(Banach sPace)X的闭子集C上的单参数算子族S(t),O落t<的,且具有下列性质: 1)S(t+:)x=S(t)(S(:)x),x〔C,t,:>0; 2)S(O)x二x,x‘C; 3)对任何x〔C,函数S(:)x(在X中取值)在【0,的)上是t的连续函数 半群S(t)是。型的,若 }Js(t)x一s(t)夕l}(e“‘}}x一夕}l,x,y‘e,t>0. 0型的半群称为压缩半群(conti公ction senu-grouP). 和线性算子半群(见算子半群(s。旧l一grouPofoperators”的情形一样,可引进半群S(t)的生成算子(罗nem山堪opemtor)(或无穷小生成元(i汕拍te-Sim司罗nerator))A。的概念: Sfh)x一x A。x二Um“、‘’产犷丹 一。一档乞人仅对那些使极限存在的元素义‘C来定义.若S(0是压缩半群,A。就是耗散算子.可以想到,Ba几Icll空间X中的算子A是耗散的(dissiPative),若对x,厂刀了牙),又>0,有}}x一y一又(Ax一Ay)“)“x一y}}.耗散算子可以是多值的,这时定义中的A义代表它在x处的任何值.一个耗散算子称为m耗散的(。一diSSIPative),若Ra刊犷(I一又A)二X,对几>0.若S(t)是口型的,则A一田I是耗散的. 半群生成的基本定理(几仄城浏犯因伪eon级n onthe罗nerationof~一groups):设A一田了是耗散算子,且对充分小的又>0,Ra翔多(I一又A)包含D(A),则存在石了又下上。型半群S,(0,使得 “·‘!,一厄「了一、小,这里x‘万石刃,,且在任何有限t区间上一致收敛.(若用较弱的条件 忽“一’‘(Ra刊罗(I一“A),二)二。(其中d是集合间的距离)来代替Ran罗(I一几A),S,(t)的存在性也能被证明). 对任何算子A,存在相应的Cauchy问题(Cauc场problon) 会(:)。,u(声),:>o,u(o)一x.(·)若问题(*)有强解(s加飞50】丽on),即有在10,的)上连续,在(0,田)的任何紧子集上绝对连续,对几乎所有t>O取值于D(A)且有强导数的函数。(t),它满足关系(*),则u(t)=S,(t)x.任何函数S,(t)x是问题(*)的唯一的积分解(integlal solu-tion) 在基本定理的假设下,若X是自反空间(代批xi灾sPac。),A是闭算子(ck粥ed operator),则函数u(t)=S,(t)x,对于x‘D(A),产生Cauchy问题(*)的强解,且几乎处处有(d“/dt)(£)C通““(r),其中A”z是A:中有极小范数的元素的集合.这时半群S,(‘)的生成算子A。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条