1) chromatic number of adjacent-position distinguishable edge coloring
邻点可区别边色数
1.
The chromatic number of adjacent-position distinguishable edge coloring of multi-joined graph S_m∨P_n∨P_n;
多重联图S_m∨P_n∨P_n的邻点可区别边色数
2) adjacent strong edge chromatic number of adjacent vertex-distinguish graph
邻点可区别邻强边色数
3) vertex-edge adjacent vertex-distinguishing total coloring
点边邻点可区别全色数
1.
f is a mapping from V(G)∪E(G) to {1,2,…,k},then it is called the vertex-edge adjacent vertex-distinguishing total coloring of G if uv∈E(G),f(u)≠f(uv),f(v)≠f(uv),uv∈E(G),C(u)≠C(v),and the minimum number of k is called the vertex-edge adjacent vertex-distinguishing total chromatic number of G,where C(u)={f(u)}∪{f(uv)|uv∈E(G)}.
对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的点边邻点可区别全染色,且称最小的数k为图G的点边邻点可区别全色数。
4) vertex-distinguishing edge chromatic number
邻点可区别的边色数
1.
Adjacent vertex-distinguishing edge chromatic number of Cm V Kn;
C_m∨K_n的邻点可区别的边色数(英文)
5) adjacent vertex distinguishing proper edge chromatic number
邻点可区别正常边色数
1.
The minimum number required for an adjacent vertex distinguishing proper edge coloring of G is called the adjacent vertex distinguishing proper edge chromatic number, denoted by x _a(G)- The adjacent vertex distinguishing proper edge chroma.
显然一个图G有邻点可区别正常边染色当且仅当G不含孤立边,对一个无孤立边的图G进行邻点可区别的正常边染色所需要的最少的颜色数称为是G的邻点可区别正常边色数,记为X′_α(G)。
6) adjacent-vertex-distinguishing-edge total chromatic number
邻点可区别-边全色数
补充资料:思北邻韩二翁西邻因庵主南邻章老秀才
【诗文】:
乡闾耆宿非复前,老章病死今三年。
朝来出门为太息,不见此翁催社钱。
我比翁虽差识字,向来推择尝为吏,事功自计无一毫,尚不如翁终日醉。
【注释】:
【出处】:
乡闾耆宿非复前,老章病死今三年。
朝来出门为太息,不见此翁催社钱。
我比翁虽差识字,向来推择尝为吏,事功自计无一毫,尚不如翁终日醉。
【注释】:
【出处】:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条