1) vertex-distinguishing edge chromatic number
点可区别边色数
1.
On the vertex-distinguishing edge chromatic number of P_m V W_n;
图P_m V W_n的点可区别边色数
2.
The vertex-distinguishing edge-coloring of F_m∨P_n are studied and vertex-distinguishing edge chromatic number of F_m∨P_n are obtained.
研究了Fm∨Pn的点可区别边染色,给出了Fm∨Pn的点可区别边色数。
3.
In this paper,we have given the vertex-distinguishing edge chromatic number of Cm∨Cn and Cm∨Sn.
对图G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该图的点可区别边色数。
2) vertex-edge adjacent vertex-distinguishing total coloring
点边邻点可区别全色数
1.
f is a mapping from V(G)∪E(G) to {1,2,…,k},then it is called the vertex-edge adjacent vertex-distinguishing total coloring of G if uv∈E(G),f(u)≠f(uv),f(v)≠f(uv),uv∈E(G),C(u)≠C(v),and the minimum number of k is called the vertex-edge adjacent vertex-distinguishing total chromatic number of G,where C(u)={f(u)}∪{f(uv)|uv∈E(G)}.
对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的点边邻点可区别全染色,且称最小的数k为图G的点边邻点可区别全色数。
3) chromatic number of adjacent-position distinguishable edge coloring
邻点可区别边色数
1.
The chromatic number of adjacent-position distinguishable edge coloring of multi-joined graph S_m∨P_n∨P_n;
多重联图S_m∨P_n∨P_n的邻点可区别边色数
4) adjacent strong edge chromatic number of adjacent vertex-distinguish graph
邻点可区别邻强边色数
5) D(β)-vertex-distinguishing edge-chromatic number
D(β)-点可区别的边色数
6) D(2)-vertex-distinguishing proper edge-coloring chromatic number
D(2)-点可区别的边色数
补充资料:边色
1.边地的风物景色。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条