1) adjacent vertex distinguishing proper edge coloring
邻点可区别正常边染色
1.
Obviously, a graph G has adjacent vertex distinguishing proper edge coloring if and only if G has no isolated edges.
显然一个图G有邻点可区别正常边染色当且仅当G不含孤立边,对一个无孤立边的图G进行邻点可区别的正常边染色所需要的最少的颜色数称为是G的邻点可区别正常边色数,记为X′_α(G)。
2) adjacent vertex distinguishing proper edge chromatic number
邻点可区别正常边色数
1.
The minimum number required for an adjacent vertex distinguishing proper edge coloring of G is called the adjacent vertex distinguishing proper edge chromatic number, denoted by x _a(G)- The adjacent vertex distinguishing proper edge chroma.
显然一个图G有邻点可区别正常边染色当且仅当G不含孤立边,对一个无孤立边的图G进行邻点可区别的正常边染色所需要的最少的颜色数称为是G的邻点可区别正常边色数,记为X′_α(G)。
3) vertex-distinguishing proper edge-coloring
点可区别正常边染色
1.
On the vertex-distinguishing proper edge-coloring of a kind of join graphs;
一类联图的点可区别正常边染色
2.
The vertex-distinguishing proper edge-colorings on K -t n are discussed in this paper.
本文对 K-tn 的点可区别正常边染色进行了讨论 。
4) Adjacent-vertex distinguishing edge coloring
邻点可区别的边染色
1.
The Adjacent-Vertex Distinguishing Edge Coloring and the Fractional Coloring of Graphs;
图的邻点可区别的边染色和分数染色
5) adjacent vertex-distinguishing acyclic edge coloring
邻点可区别无圈边染色
1.
In this paper,the concept of the adjacent vertex-distinguishing acyclic edge coloring and some conjectures about it are given.
提出了邻点可区别无圈边染色的概念及其相关猜想,并证明了对于一个没有孤立边的图G,如果它的邻点可区别边染色数χ′as(G)=ε,那么存在一个常数r,如果围长g(G)≥rΔlogΔ,那么G的邻点可区别无圈边染色数至多为ε+1。
6) general neighbor-distinguishing edge coloring
一般邻点可区别边染色
补充资料:正常(超导)—超导(正常)转变
正常(超导)—超导(正常)转变
transitionfromnormal(superconducting)statetosuperconducting(normal)state
一般指在常压下改变温度到Tc时,物质的电阻从R>0(R=0)的正常态(超导态)到R=0(R>0)的超导态(正常态)的转变。无磁场时这种转变属二级相变。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条