1) indicator function
示性函数
1.
Based on the properties of indicator function and the theory of Lebesgue-Stieljes integral,we provided another method to prove Jordan formula and measure infer(super) limit inequality.
利用Lebesgue-Stieljes积分,结合示性函数的有关性质证明了著名的Jordan公式和测度上下极限不等式。
2.
The indicator function and its properties are discussed in this paper.
讨论了示性函数的若干性质,并利用示性函数简洁地证明了切比雪夫不等式和其它几个重要的概率公式。
2) indicate function
示性函数
1.
The Application of Indicate Function in Mathematics expectation and Method difference;
示性函数在期望方差中的应用
2.
Examples show the applications of indicate function in actuarial techniques.
示性函数是一个形式和分布都很简单的随机变量。
3) indicator function
指示函数
1.
First, the fundamental equation is set up, and, direct and inverse scattering problem are discussed; Second, indicator function of represent scatterer characterization is constructed; Third, the boundary of scatterer is determined by property of the function.
首先建立了求解问题的基本方程 ,分别就正问题和逆问题加以讨论 ,同时构造了一个表达散物特征的指示函数 ,然后利用该函数的性质 ,确定具有阻抗散射物的边界。
2.
First,the indicator function representing the scattering characteristics is constructed;then,based on the property of the function,the fundamental equation for solving the inverse problem is established;thereby,the shape of the obstacle is determined.
首先构造表达散射物特征的指示函数,然后利用该函数之特性,建立求解该类反问题的基本方程,从而确定散射物的边界形状。
4) indicator function
表示函数
1.
Some relationships among the support function and indicator function of a convex set and their second-order epi-derivatives are given.
本文研究集值映射的proto—导映射在拓扑线性空间中的存在性,凸集的支撑函数和表示函数与其二阶上图导数的联系。
2.
With indicator function,support function,distance function,and projection of a point to a closed convex body,the canonical representation for a convex body and characterization on the projection of a point to boundary of the set are presented.
利用集合的表示函数、支撑函数、距离函数和投影等研究闭凸体的典范表示及点到边界的投影特征。
5) indicative function
示例函数
6) list-oriented function
表指示函数
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条