1) bifunction method
双函数法
1.
With the help of Mathematica, new explicit and exact traveling solutions for the generalized (2+1)-dimensional Nizhnik-Novikov-Vesselov equation are obtained by using bifunction method and Wu-elimination method.
借助计算机代数系统Mathem atica,利用双函数法和吴文俊消元法,获得广义(2+1)维Nizhink-Novikov-Vesselov(GNNV)方程的多组新的显式精确行波解,包括孤波解和周期性解。
2.
With the help of Mathematica, new explicit and exact traveling solutions for Boussinesq equation are obtained by using bifunction method and Wu elimination method, including new solitary wave solutions and periodic solutions, and the bifunction method is further complemented.
借助计算机代数系统 Mathematica,利用双函数法和吴文俊消元法 ,获得 Boussinesq方程的多组新的显式精确行波解 ,包括孤波解和周期性解 ,同时进一步补充和完善了双函数
3.
In this paper, with the help of Mathematica, new explicit solitrary wave solutions of KdV equation are obtained by bifunction method and Wu-eliminition method, thus the bifunction method is further complemente
借助Mathematica计算机代数系统 ,采用双函数法和吴文俊消元法 ,获得KdV方程的多组新的孤波解 ,进一步补充和完善了双函数
2) hyperbola function method
双函数法
1.
In this paper,many traveling wave solutions to NLS equations were obtained by using hyperbola function method and Wu-elimination method,which include new traveling wave solutions and rational traveling wave solutions.
给出一种求解非线性发展方程精确行波解的新方法——双函数法。
3) double functions method
双函数法
1.
Stimulated by extended tanh-function method, a double functions method is proposed for constructing exact travelling wave solutions for nonlinear evolution equations.
受广义tanh-函数法的启发,该文给出了一种求解非线性发展方程精确行波解的新方法:双函数法。
4) hyperbolic function method
双曲函数法
1.
A simple transformation,hyperbolic function method and exact solution for a class of reaction diffusion equation;
一个简单的变换,双曲函数法和一类反应扩散方程的精确解
2.
A united hyperbolic function method to find the solita ry wave solutions to nonlinear evolution equations was proposed,and two kinds of solitary wave solutions to the combined KdV-mKdV equation were obtained by this method.
提出一种统一的求解非线性演化方程孤波解的双曲函数法 ,并利用这种方法求出了组合KdV mKdV方程的钟状孤波解和激波状孤波解 。
5) hyperbola function method
双曲函数法
1.
This paper found some exact solutions of Burgers equation with variable coefficients by the hyperbola function method, including solitary wave solutions and periodic solutions.
对双曲函数法进行了扩展,利用它找到了广义变系数Burgers方程在一定条件下的若干精确解,包括变速孤立波解和周期波解,许多解为首次所得。
2.
The hyperbola function method has been extendedand to find some exact solutions to Burgers equation with variable coefficients.
对双曲函数法进行了扩展,利用它找到了变系数Burgers方程在一定条件下的若干精确解,包括变速孤立波解和周期波解。
3.
Some new exact solutions for a class of the system of LS nonlinear equation are obtained by using the homogeneous balance method, hyperbola function method and trial function method.
利用齐次平衡法、双曲函数法、试探函数法求出了一类长短波方程多个新的精确解。
6) modified double weighted function method
修改双权函数法
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条