说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 双参数填充函数算法
1)  The filled function method
双参数填充函数算法
2)  filled function method
填充函数算法
1.
This paper modifies the filled function method[1], which is previously designed to solve continuous global optimization problems, to solve integer programming problems.
其次,构造整数规划问题的填充函数算法。
2.
The filled function method was developed by Ge in for unconstrained global minimization problem .
对求解无约束总体优化问题的填充函数算法〔2〕作适当改进,使得新的填充函数算法无须对问题的局部极小解个数作假设,且填充函数中参数的选取不依赖于局部极小解谷域的半径。
3.
The filled function method was utilized to achieve solution algorithm of the model.
在此基础上,给出了并联式Agent系统的可靠性评价方法,建立约束条件下的多Agent系统可靠性极大化问题的数学模型,利用填充函数算法的思想构造该模型的求解算法,并通过实例说明并联式结构和求解算法的有效性。
3)  convexized filled function method
凸填充函数算法
1.
This paper modifies the convexized filled function method of continuous global optimization to solve integer programming problems.
改造文献[1]的求解连续总体优化问题的凸填充函数算法使之适于求解整数规划问题。
4)  Modified filled function method
单参数填充函数法
5)  filled function method
填充函数法
1.
A filled function method for nondifferentiable programming;
不可微规划的填充函数法
2.
The filled function method is an effective approach for finding the global minima of multimodal and multidimensional functions,and the constructed filled function is vital to the results of optimization.
填充函数法是一种求解多变量、多极值函数全局最优化的有效方法,这种方法的关键是构造填充函数。
3.
The filled function method is an effective approach to find the global minima of multi-models and multi-variables functions.
填充函数法是1种求多变量,多极值函数全局最优的有效方法。
6)  filled function
填充函数
1.
Modified hybrid optimization algorithm based on locally filled functions;
基于局部填充函数的混合优化算法的改进
2.
Study on class of filled functions for global optimization;
求全局最优化问题的一类填充函数
3.
A filled function algorithm with mitigator for solving nonlinear constrained programming;
求解约束规划的带缓和因子的填充函数算法
补充资料:单叶函数的参数表示


单叶函数的参数表示
alent functions parametric representation of urn-

  单叶函数的参数表示1 parametric rePrese川tat咖of画、val以丘.rd佣s;napaMeTP“叨ecKOe npe八cTal明e““el 实现平面域到典型域(例如具有同心裂纹的圆盘)的共形映射的单叶函数(u州川enti切犯tion)的一种表示;通常以如下方式出现.选定单参数区域族Q‘,O(t0很小.当参数t连续变化时,可由此引出一些微分方程.最著名的是l为脚讹r方程(助wner eqUa石on)与L加汇哈r一Ky中apeB方程.在离散的情形—对格域Q:和自然数t—从f。到了r+‘,。=l,的转换由递推公式给出.这些公式与方程通常源于sch场arz公式(见tll)及其推广(见〔21).参数表示的另一个具有同样重要性的源泉是关于上述提到的区域族的Green函数G:(:,“‘)(“,z‘任Q,)的Hadamard变分(见[31,!4]).对于椭圆微分方程,Hada在团心方法亦称为不变嵌入法(Tnethod of mvariant如bedding)(见【5」).下面就最简单的(离散)情形展示参数表示、H往da几四rd变分及不变嵌入之间的联系, 设Q是复整数的一个集合(格域(btticedo-翅in))且设Green函数g。(:,:‘)是关于Q上所有实值函数“(z)组成的类R。上的D州c比t一伪u幽、泛函(Djric比t一伪u乡as ftm ctional) I Ir(。)二29(:‘)+艺艺p*(。)iv*。(z)l’ k,02‘Qo的一个极端点,此处 Q。二{“:z,:一l,:一i,Z一l一i‘Q}, V。g(z)=g(z)一g(:一l一i), V,g(:)“g(:一l)一g(:一i), p*(0)三1,p*(t+l)“p*(t)+Nj;:,N是自然数,占;是Kfoneeker记号,心‘二(k,,::),t二0,…。T一1,是某个数偶集合;毛:,二:=1,…,T}是Q:的边界,k‘=o或1.寻求泛函I,(g)的极值是一个二次规划问题.对于t和t+1的解的比较给出不变嵌人(HadaJ爪ard变分)基本公式(bas元for-m往巨of川、,ariantjmbedding(Hadamard城tr以泳刀1)): G,+l(:,z‘)二 一G!‘一”一告v*G!‘一,v*G!‘一”, (2)其中e,=N一’一v*,v*,G,(z。,z,)>o,记号v*,表示关于该Green函数第二变量的微分算子(1).已知G。(:,:‘)即可从(2)式逐步(递推)得到所有的函数G。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条