说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 球面并联机器人
1)  spherical parallel robot
球面并联机器人
1.
The position control of a tendon driven, 3-DOF spherical parallel robot mechanism actuated by pneumatic muscle actuators is studied, including the kinematics model, track planning method, experimental test and control system and the control algorithm of intelligent PID and the inverse position solution.
研究将气动人工肌肉驱动器应用于柔索驱动三自由度球面并联机器人机构,介绍了该机器人的运动学模型,提出一种简便的轨迹规划方法,在建立的实验测控系统中,应用含并联机器人的位置逆解和对气动人工肌肉的智能PID控制的位置控制算法,实现对机器人末端的位置控制,通过机器人的位置正解验证了位置控制的控制效果。
2)  spherical parallel manipulator
球面并联机器人
1.
Analytical dynamic model of 3-DOF spherical parallel manipulators is established based on sub-structure method,and a distributed parallel computing environment for dynamic simulation of spherical parallel manipulators is developed based on grid computing technology.
基于以子结构为基本单元的建模思想,建立了3-DOF球面并联机器人的动力学解析模型,并基于网格计算技术构建了球面并联机器人动力学仿真的分布式并行计算环境。
3)  planar parallel robot
平面并联机器人
1.
Orientation maneuverability on the positional posture of 3-RRR planar parallel robot;
3-RRR平面并联机器人位姿的方向可操作性
2.
A new planar parallel robot system with a compact and simple structure has been developed.
研制出一种结构紧凑、简单实用的平面并联机器人系统。
4)  planar parallel mechanism
平面并联机器人机构
5)  3-DOF planar parallel manipulators
3-DOF平面并联机器人
1.
3-DOF planar parallel manipulators were classified into category 1 and category 2,according to the nature of the variables of intermediate joints in each limb,revolute joint or prismatic joint.
根据3-DOF平面并联机器人过渡关节为转动关节或移动关节,推知其过渡(关节)变量为转动变量或移动变量,将其分为两种类型,即过渡变量为转动变量的第一类和过渡变量为移动变量的第二类平面并联机器人。
6)  planar-micro-parallel robot
平面微型并联机器人
补充资料:球面与非球面的区别
球面与非球面的区别
所谓球面和非球面,主要是针对镜头(各种相继、显微镜等镜头)、眼镜(包括隐形眼镜)的镜片几何形状而言,即球面镜片与非球面镜片。二者在几何形状上的差别决定了它们在平行的入射光的折射方向上产生差异,从而影响其成像效果的好坏。
球面镜片,其镜片呈球面的弧度,其横切面亦呈弧状。当不同波长的光线,以平行光轴入射后镜片上不同的位置时,在菲林平面(与镜片中心和镜片焦点联机相垂直的、通过焦点的平面)上不能聚焦成一点,而形成像差的问题,影响影像的质素,例如出现清晰度下降和变形等现象。一般普通镜头是采用球面镜片组成的。
为解决这一成像问题,可以透过在镜身内增加镜片以作为对像差的矫正,但此举可能会引起反效果,进一步削弱影像质素,因为额外的镜片,除增加光线在镜身内反射的机会,引起耀光现象外,亦会增加镜头的体积和重量。
非球面镜片,其镜片并非呈球面的弧度,而是镜片边绿部份被「削」去少许,其横切面呈平面状。当光线入射到非球面镜面时,光线能够聚焦于一点,亦即菲林平面上,以消除各种象差。例如耀光现象在球面镜使用大光圈会比细光圈下拍摄来得严重,但若然加入非球面镜便可将耀光情况大大降低;又例如影像呈现变形(枕状或桶状),乃因镜头内的光线没有适当折射而产生,以变焦镜为例,短焦距时通常是桶状变形而变焦至长焦距时则为枕状变形,若采用非球面镜,则可以改善这方面的像差。
引用非球面镜技术,对生产大光圈、高倍数变焦、以至极端广角及远摄的镜头最为有利,影像质素因像差的减少而有所提高,镜身体积亦有缩小。现时市面有不少镜头生产商均表示旗下部份焦距的镜头采用了非球面镜片,以至轻便变焦相机(例如28至90mm、38至105mm等)都采用非球面镜设计,以提高影像质素。
非球面镜制作的难处在于它的几何尺寸的设计和几何尺寸的精密控制,目前这方面的技术日本最为先进。当前非球面镜的加工主要由两种方式:一类是采用高精密度研磨技术(手工或机械)对球面镜片进行再加工;一类是用高精度的模具进行压模或注塑方式直接制作非球面镜。
非球面光学零件塑料成型技术
光学塑料成型技术是当前制造塑料非球面光学零件的先进技术,它包括注射成型、铸造成型和压制成型等技术。光学塑料注射成型技术主要用来批量生产直径为100毫米以下的非球面透镜光学零件,也可制造微型透镜阵列。而铸造和压制成型技术主要用于制造直径为100毫米以上的非球面透镜光学零件。
塑料非球面光学零件由于具有重量轻、成本低,光学零件和安装部件可以注塑成为一个整体从而节省装配工作量,以及耐冲击性能好等优点,在军事、摄影、医学、工业等领域有着非常广阔的应用前景。例如,在美国AN/AVS-6型飞行员微光夜视眼镜中就采用了9块非球面塑料透镜。另外,在AN/PVS-7步兵微光夜视眼镜、HOT夜视眼镜、“铜斑蛇”激光制导炮弹导引头和其它光电制导导引头、激光测距机、军用望远镜以及各种照相机的取景器中也都采用了非球面塑料透镜。美国TBE公司在制造某种末制导自动导引头用非球面光学零件时,曾对几种光学塑料透镜成型技术做过经济分析对比,认为采用注射成型技术制造非球面塑料光学透镜费效比最佳。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条