1) reward function
强化函数
1.
A reward function for real traffic condition was proposed to control traffic dynamically and on real-time.
介绍了将经验知识与Q学习算法相结合实现的Agent学习机制,提出了一种适合交通环境的强化函数,以解决单路口的动态实时控制。
2.
The design of reward function is one of difficulties in building reinforcement learning system.
强化函数的设计是构建多智能体学习系统的一个难点。
3.
To improve the performance of the reinforcement learning method on multi-agent systems,thinking about the characteristic of Keepaway that always ended with failure,based on the reference of the reward function design pattern in the pole-balance system,a new punitive reward function is redesigned.
为了提高强化学习算法在多智能体系统中的性能表现,针对典型的多智能体系统-Keepaway平台总是以失败告终的特点,受与之有相同特点的单智能体系统杆平衡系统所采用强化函数的启发,重新设计一种新的惩罚式的强化函数。
2) strong convex function
强凸函数
1.
Here we discuss its properties basing on the definition of the strong pseudoconvex function,and give its relationship with strong convex function.
文中在给出强伪凸函数定义的基础上讨论了它的一些性质,另外还给出了它与强凸函数之间的关系。
3) strength function
强度函数
1.
A new simplified ductile spall model is presented using the redefined damage and the strength function given by Cochran-Banner.
重新定义损伤、应用Cochran-Banner模型中的强度函数,提出了一种新的简化延性层裂模型。
2.
The strength function given by Cochran-Banner was maintained using the redefined damage,and the correction concerning the volume of the mesh cells was realized considering it unnecessary to expect that it is much easier to open microcracks once they are formed than to strain the solid further.
这种新模型仅保留CochranBanner模型中的强度函数,重新定义损伤,并抛弃了基本假设:一旦微损伤形成,使微损伤演化远远易于使固体进一步体积应变,进而修正了差分微元中固体比容的计算。
4) auxiliary scalar coercive function
强制函数
1.
In present paper,considering an auxiliary scalar coercive functions and building upon f in Euclidian spaces,we obtain theorem 2 and give a new proof of the known theorem of Hadamard generalized by Plastock.
最近学者Zamperi提出了用非负强制函数研究全局同胚问题,本文利用其思想,引用强制函数证明了Hadamard-Levy定理及其一些推论。
5) light intensity function
光强函数
1.
With the projection phase transfer function and light intensity function of the projected light, the phase value is calculated by the method, in which the effect of the nonsine and aperiodicity of projected light is considered.
该方法通过投影相传递函数和投影光的光强函数计算相位值,并考虑了测量投影光非正弦、非周期性的影响,提高了投影光栅的条纹精度和相位精度,相位精度为像素级,通过插值可达到亚像素级。
6) Intensity function
强率函数
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条