1) infinite triangular matrix
无穷三角阵
1.
In this paper,a new proof of the stolz theorem is given by the infinite triangular matrix.
利用无穷三角阵给出了Stolz定理的证明,并讨论了Stolz定理在数列极限方面的应用。
2) infbite trianguler matrin
无穷三角矩阵
3) infinite lower-triangular matrices
无穷阶下三角矩阵
1.
The main purpose of this paper is to study in full generality combinatorial inverse relations of arbitrary infinite lower-triangular matrices, namely, a pair of such matrices (F_(n,k)) and (G_(n,k)) thatGenerally speaking, our method relies on an expression in terms of determinants for each n-row and k-column entry G_(n,k) with the assumption that (F_(n,k)) is known.
本文主要研究无穷阶下三角矩阵的反演关系,即两个无穷阶下三角矩阵(F_(n,k))∈N和(G_(n,k))_((n,k)∈N)(N为自然数集)的互逆关系,也就是主要方法是通过给定矩阵(F_(n,k)),利用行列式和算法先计算逆矩阵(G_(n,k))的元素,再确定(猜想)它的一般解析式,最终通过归纳法和Riordan群方法给出它的数学证明,从而得到有用的反演关系。
4) infinite triangle
无穷三角形
1.
By introducing assistant infinite triangle and Delaunay triangulation, this new algorithm assures that its running result is entirely Delaunay triangulation and overcomes Bowyer s algorithmic limitations.
通过引入辅助的无穷三角形和在全空间 EK 的Delaunay三角剖分 ,确保最终结果是数据点集的凸包的完整Delaunay三角剖分 ,而且使算法具有在线性质 ,适用于动态的数据点集 。
5) infinite matrix
无穷矩阵
1.
The boundedness of the set of infinite matrix transformations from convergence-free space to sequence spaces is studied,and a general form of it is deducted.
研究了从收敛自由空间到序列空间l1的无穷矩阵变换的有界集的特征,得到了从一般的收敛自由空间到序列空间l1的无穷矩阵变换的一般形式。
2.
Let λ and μ be sequence space and have both the signed-weak gliding hump property,(λ,μ) be the algebra of the infinite matrix operators which transform λ to μ.
λ、μ是具有符号弱滑脊性的序列空间,(λ,μ)是λ到μ的无穷矩阵代数。
3.
This paper introduces the research development of the important effect algebra in quantum mechanics,and points out that it is of great significance to the establishment of mathematical foundation of quantum mechanics by making use of infinite matrix theory to study its convergent theory and invariants.
指出利用无穷矩阵理论研究其上的收敛理论和不变量,对建立量子力学的数学基础有重要意义。
6) upper-triangular-type infinite dimensional Hamiltonian operators
上三角型无穷维Hamilton算子
1.
A necessary and sufficient condition is obtained that the continuous spectrum of upper-triangular-type infinite dimensional Hamiltonian operators is empty and its criterions are given.
该文首次研究了无穷维Hamilton算子的连续谱是否为空集以及何时为空集的问题,得到了上三角型无穷维Hamilton算子连续谱为空集的充分必要条件,给出了上三角型无穷维Hamilton算子连续谱为空集的几个判别准则。
补充资料:三角阵列
三角阵列
triangular array
三角阵列仁杭娜州叮an习y;cep”盛cxeMal 同级数序列(s叫uence ofse由s).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条