1) infinite matrix transformation
无穷矩阵变换
1.
Using Antosik-Mikusinski basic matrix theorem? and the subset family, for a type of mapping matrix, a series of matrix transformation theorems is obtained, and the characterizations of a class of infinite matrix transformations is also derived.
利用Antosik-Mikusinski基本矩阵定理和该子集族,对于一类映射矩阵,获得了一系列矩阵变换定理,并且给出了一类无穷矩阵变换的刻划,补充和完善了非线性矩阵变换定理。
2.
The decisive breakthrough in research of infinite matrix transformation is that the action of continuous linear operators in Banach Space on vector sequence, which was started at 1950 by A.
无穷矩阵变换研究上的决定性突破是1950年A。
3.
From the Antosik-Mikusinski basic matrix theorem and the subset family,for a type of mapping matrix,an infinite matrix convergence theorem is obtained,and the stronger characterizations of a class of classical infinite matrix transformations were also derived.
利用Antosik-Mikusinski基本矩阵定理和该子集族,对于一类映射矩阵获得了一个无穷矩阵收敛定理,并且给出了一类经典无穷矩阵变换的更强刻划。
2) infinite matrix
无穷矩阵
1.
The boundedness of the set of infinite matrix transformations from convergence-free space to sequence spaces is studied,and a general form of it is deducted.
研究了从收敛自由空间到序列空间l1的无穷矩阵变换的有界集的特征,得到了从一般的收敛自由空间到序列空间l1的无穷矩阵变换的一般形式。
2.
Let λ and μ be sequence space and have both the signed-weak gliding hump property,(λ,μ) be the algebra of the infinite matrix operators which transform λ to μ.
λ、μ是具有符号弱滑脊性的序列空间,(λ,μ)是λ到μ的无穷矩阵代数。
3.
This paper introduces the research development of the important effect algebra in quantum mechanics,and points out that it is of great significance to the establishment of mathematical foundation of quantum mechanics by making use of infinite matrix theory to study its convergent theory and invariants.
指出利用无穷矩阵理论研究其上的收敛理论和不变量,对建立量子力学的数学基础有重要意义。
3) infinite-order linear equations
无穷阶矩阵
4) infinite matrix ring
无穷矩阵环
1.
We discuss derivation on infinite matrix rings, and prove that every derivation ofinfinite matrix rings with a finite number of nonzcro entries on a ring R can be represented asthe sum of two special derivations.
讨论无穷矩阵环上的导子,证明了环R上有限个元素不为零的无穷矩阵坏的每个导子均可表示为两个特殊导子之和。
5) infinitesimal transfer matrix
无穷小转移矩阵
6) infinite matrix algebra
无穷矩阵代数
1.
A note of infinite matrix algebras;
无穷矩阵代数的一个注记
补充资料:Radon变换和逆Radon变换
Radon变换和逆Radon变换
X线物理学术语。CT重建图像成像的主要理论依据之一。1917年澳大利亚数学家Radon首先论证了通过物体某一平面的投影重建物体该平面两维空间分布的公式。他的公式要求获得沿该平面所有可能的直线的全部投影(无限集合)。所获得的投影集称为Radon变换。由Radon变换进行重建图像的操作则称为逆Radon变换。Radon变换和逆Radon变换对CT成像的意义在于,它从数学原理上证实了通过物体某一断层层面“沿直线衰减分布的投影”重建该层面单位体积,即体素的线性衰减系数两维空间分布的可能性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条