1) limit performance function
极限功能函数
2) limit function
极限函数
1.
In this paper, the author discusses the limit function of {fn} in a connected component of F(f).
本文讨论迭代序列{fn}在Fatou集F(f)的连通分支上的极限函数的性质,证明了常数极限函数在集合L中。
2.
Some properties of the limit function of the iterated exponentials sequence are presented.
给出了指数迭代序列的极限函数的一些性质。
3.
The differentiability of limit function of functional sequence is studied;a stronger condition is improved that ordinary derivative functional sequence is uniform convergence;a sufficient condition of the differentiability of a limit function is obtained,and its applying range is expanded.
以极限为工具,研究了函数列的极限函数可微性问题,改进了通常的导函数列是一致收敛的较强条件,得到了一个极限函数可微性的一个充分条件,并扩大了其应用范围。
3) functional limit
函数极限
1.
Functional Limit of its Composite Calculation and Variable Substitute Formula;
函数极限的复合运算法则与变量替换公式
2.
Heine theorem to proving the four fundamental rules of functional limit and both sides grip theorem of functional limit and introduces a new method for testifying to the four fundamental rules of functional limit and the both sides grip theorem of functional limit.
Heine定理来证明函数极限的四则运算和函数极限的两边夹定理,同时给予函数极限的四则运算与函数极限的两边夹定理的证明的新方法。
4) function limit
函数极限
1.
Solution of definite integral and sum function limit;
定积分与和式函数极限的求解
2.
The computation of function limit is essentially required in higher mathematics education.
函数极限的计算是高等数学教学的基本要求,本文归纳了函数极限计算的一些常见方法与技巧。
5) Limit of function
函数极限
1.
Accurately grasping the operation methods of limit of function is the essential to do the research on function.
函数极限是研究函数的重要工具。
6) function performance
函数功能
1.
Machining discal cam using unmerical control system function performance;
用数控系统的函数功能加工盘形凸轮
补充资料:上极限和下极限
上极限和下极限
upper and lower limits
上极限和下极限【u即era闭lower功l‘ts;。epx“戚,”“袱n“匆npe八e月M」 l)序列的上极限和下极限分别是给定的实数序列的所有部分(有限的和无穷的)极限(1而jt)中的最大极限和最小极限.对于任何实数序列{二。}(。=l,2,…),在扩充的数轴上(即在增添符号一的和+的的实数集合中)它的所有部分(有限的和无穷的)极限的集合是非空的,并且具有最大元素和最小元素(有限的和无穷的).部分极限的集合的最大元素称为序列的上极限(up详r lin五t)(腼sup),记为 。呱x。或。叭s叩x。,而最小元素称为下极限(lowerUmit)(Uminf),记为 黑‘·或。叭讨二。.例如,如果 x。=(一1)月则 黑‘”一’,。叭‘一‘·如果 x,,二(一l)”n,则 黑‘·一叭。叭二。一十二.如果 x,=n+(一1)”n,则 澳“一”,悠’一+呱任何序列都具有上极限和下极限,并巨如果一个序列是上(下)有界的,则它的上(下)极限是有限的.一个数a是序列{x。全(陀=1,2,…)的上(下)极限,当且仅当对于任何£>0,下述条件成立:a)存在数刀:,使得对于所有的指标n>。。,不等式x。a一。)成立:b)对于任何指标。。,存在指标”‘=n‘(£,n。),使得对于所有的指标n’>n。,不等式x。>a一。(x。十动成立.条件tl)意味着:对于给定的£>0,在序列{x。}中只存在有限个项无、,使得x。>a+。(x。<“一的.条件b)意味着:存在无穷多项x,.,使得x。>a一。(x。<“+。).如果两个极限都是有限的,则通过改变序列各项的符号,可使下极限化为上极限: 黑“·一。叭‘二 为使序列{x。}(n二1,2,…)具有极限(有限的或无穷的(等于符号一的和+的之一)),其必要和充分条件是 黑x一、,只义二 2)函数f(劝在一点x.,处的上(下)极限是f(x)在x。的一个邻域中的值的集合的上(下)界当这个邻域收缩到x{、时的极限.上(下)极限记为 画.f(·)[、f(·)〕· 设函数、f(x)定义在度量空间R上,并且取实数值.如果x{、〔尺,o(x。;。)是x。的s邻域,。>0,则丽f‘、、一l、f su。,丫·、1 L义‘O(尤。,£)J和 黑f(·)一、{二。黑;:,f(·))·在每一点xoR处,函数f(:)具有上极限了丈灭)和下极限‘f(x)(有限的或无穷的).函数了下刃在R上是上半连续的,函数f(x)在R上是下半连续的(在取值于扩充数轴的函数的半连续概念的意义下,见半连续函数(~一continuous function)). 为使函数.f(x)在点、。处具有有限的或无穷的(等于+的或一田)极限,其必要和充分条件是 华黑f(x)一煦。j.(’)· 函数在一点上的上极限(下极限)的概念可以自然地推广到定义在拓扑空间上的实值函数的情况. 3)集合序列{A。}(n=1,2,…)的上极限和下极限芬另i是集合 A二户叹A。,它是由属于无穷多集合A。的元素x组成的,以及集户乙、 县=业坠A。,它是由属于从某个指标”=n(x)开始的一切集合A。的元素x组成的.显然,Ac万【补注】在英文中,上极限又称supenorlin五t或】ilnitsllperior,下极限又称加几rior limit或止面t inferior.亦见上界和下界(upper and kiwer boullds). 一个集合的子集序列A,,A:,…的上极限和下极限由下列公式给出二 。叭式一*口招*态, 黑通一月贝户/
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条