1) dual mixed variables
对偶混合变量
3) dual variable
对偶变量
1.
The order of differential equation is reduced when the dual variables of Hamilton system are used in mechanical problems.
力学中的Hamilton体系采用对偶变量描述问题。
2.
Using the method of dividing variables , the solution of elastic dynamics can be changed into the eigen value problem of Hamilton s space differential operator matrix , and the total solution of dual variables (modal strain and modal strain rate ) can be obtained by .
采用分离变量方法,将弹性动力学解转变为Hamilton空间算子矩阵的本征值问题,对偶变量(模态应变和模态应变率)的全解通过本征解来展开而获得。
3.
In order to enhance the accuracy of computing the disturbing gravity vertical gradient further, The Monte Carlo method based on group sampling, dual variable or group sampling & dual variable to compute was presented.
为了进一步提高扰动重力垂直梯度的计算精度,提出采用分层抽样法、对偶变量法和基于分层抽样的对偶变量法来计算扰动重力垂直梯度,并对以上三种改进Monte Carlo方法的计算表达式和误差表达式进行了理论推导,结果表明改进后的Monte Carlo方法误差数量级可降低到10-6。
4) dual mixed variational formulation
对偶混合变分形式
1.
Based on the primal variational formulation and dual mixed variational formulation, two numerical methods are introduced for an unilateral beaming problem, the Uzawa type algorithm resolving discrete dual mixed variational formulation is presented here.
本文分别基于原始变分形式与对偶混合变分形式,对一类单边约束问题进行了数值求解,提出了求解离散对偶混合变分问题的Uzawa型算法,并用数值例子验证了算法的有效性。
2.
Based on the dual mixed variational formulation with three variants (stress, displace_ment, displacement on contact boundary) and the unilateral beaming problem of finite element discretization, an Uzawa type iterative algorithm is presented.
基于弹性接触问题的三变量 (应力 ,位移 ,接触边界位移 )对偶混合变分形式 ,对混合有限元离散化的单边约束问题 ,提出了一种Uzawa型算法· 首先证明了迭代算法的收敛性 ,然后用数值例子验证了迭代算法的有效
3.
Based on the dual mixed variational formulation for the Signorini problem,a nonconforming finite element method is proposed.
基于Signorini问题的对偶混合变分形式 ,提出了一种非协调有限元逼近格式 ,证明了离散的B B条件 ,获得了Raviart Thomas(k =0 )有限元逼近的误差界O(h3 4) ,并且Uzawa型算法对协调与非协调有限元逼近格式进行了数值求解 。
5) mixed type dual
混合型对偶
1.
A necessary and sufficient condition for the K-T points to be the minimum points was given,a necessary and sufficient condition for weak duality between the primal and a mixed type dual was obtained also.
对于目标函数和约束函数分别是某些非光滑函数的单目标规划,讨论了它的每个K-T点都是全局极小点的充要条件以及原规划和它的混合型对偶之间的弱对偶成立的充要条件。
2.
A sufficient condition and a mixed type dual are presented for the generalized fractional programming only under (F,ρ)-convexity assumptions.
在函数 (F ,ρ)_凸性假设下 ,给出了广义分式规划的一个最优性充分条件和一个混合型对偶 ,并且在适当的条件下 ,给出了相应的弱对偶定理、强对偶定理 ,以及严格逆对偶定理 。
3.
This paper gives one mixed type dual problem for a class of nondifferentiable generalized fractional programmingproblems, and proves weak duality, strong duality, and strict converse duality theorems under the assumptions of generalized(F,ρ) -convexity.
给出了一类非可微广义分式规划的一个混合型对偶。
6) dual mixed bodies
对偶混合体
补充资料:变量与变量值
可变的数量标志和所有的统计指标称作变量。变量的数值表现称作
变量值,即标志值或指标值。变量与变量值不能误用。
变量值,即标志值或指标值。变量与变量值不能误用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条